Talking Teaching

December 6, 2018

the sad state of science learning in primary school

This post was first published on my ‘other’ blog. It’s not intended to diss primary school teachers – quite the reverse! They need all the help & support they can get to help them deliver the science curriculum.

In 2011, Sir Peter Gluckman released his report, Looking ahead: science education for the 21st centuryIn it, he noted the need to improve science teaching in primary schools, commenting that

there should be an attempt to improve the confidence [my emphasis] of all teachers within primary schools to assist in science and that all primary schools should be encouraged to develop a science champion.

And in 2012, David Vannier pointed out that

there is growing evidence that too many children are not doing well in science and do not have access to effective instruction, especially at the primary level.

and that

[at] the same time that the New Zealand government is seeking to spur innovation in science as a means to improve the economy, less and less emphasis is being placed on science instruction in primary schools.

Fast forward to Monday this week, when Radio NZ reported on the findings of The National Monitoring Study of Student Assessment (NSSA): that 20 percent of Year 8 children last year reached the expected level of achievement in science – the lowest figure of any learning area in the curriculum. While most children liked learning about science at school – 82% of those in year 4 and 65% in year 8 – those figures haven’t changed significantly since the previous survey in 2010, and the decline between years 4 and 8 should be a concern. Overall, these results don’t augur well for science literacy and engagement with science amongst our young people.

You may be tempted to lay this result at the feet of National Standards. Don’t. Looking Ahead was published in 2011. National Standards were first implemented in 2010, just a year earlier. The issues identified by Sir Peter Gluckman have had a longer gestation than that.

I wrote about Sir Peter’s report at the time, highlighting his statement that

science education is not just for those who see their careers involving science but is an essential component of core knowledge that every member of our society requires.

Thus, science education needs to deliver on what Sir Peter characterised as ‘citizen-focused objectives’, where all children need to have:

  • a practical knowledge at some level of how things work;
  • some knowledge of how the scientific process operates and some level of scientific literacy
  • enough knowledge of scientific thinking as part of their development of general intellectual skills so that they are able to distinguish reliable information from less reliable information.

But can it deliver? His report also notes that

[a] well prepared primary school teacher will integrate excitement about the natural world and scientific forms of thinking into literacy and numeracy teaching, and into general educational processes. The challenge is how to provide primary teachers with the skills to do so. [My emphasis]

I believe that meeting this challenge will require changes to at least two things: teacher-training curricula, and professional development (PD) and support.

Just 25% of primary school teachers hold another qualification, in addition to their teaching degree, and it’s probably fair to say that BSc graduates are in a minority. Intending primary school teachers usually study for a 3-year Bachelor of Teaching degree, and take a range of papers in their first year – including one on science teaching. This one paper, plus learning opportunities while on practicum in schools, may well be their sole exposure to science (Campbell, 2018).

Which is where the PD and support come in. Ally Bull (2016) found that science was “marginalised” in the primary curriculum; and that teachers – lacking confidence to teach the subject – often had little in-school support and only limited access to opportunities for PD. The majority of those providing the PD (51%) aimed to enhance teachers’ confidence to teach science, and just 5% felt that developing their knowledge of science was important. Bull also cited other research that found that “primary teachers’ lower confidence in low confidence in teaching science reflected their lesser degree of content knowledge.”

There are ways to address this. Anne Hume & Cathy Buntting (2014) developed resources and shared these with primary teacher trainees, encouraging them to think about what science ideas they could teach (plus the why, when & how) while using those resources. Their results? Really encouraging:

Even student teachers who had previously felt very apprehensive about teaching science reported feeling far more confident about the prospect after completing the CoRe assignment.

Programs like theirs, changes in teacher education, and the commitment to provide ongoing mentoring and support, should raise teachers’ confidence in teaching science and see them reach their full potential as ‘science champions’. Our teachers and our children deserve no less.

 

 

December 5, 2013

nz’s pisa rankings slip, & the soul-searching begins

Filed under: education, science teaching — Tags: , , , , — alison @ 11:06 am

The latest PISA results are out, and NZ – despite remaining in the ‘above the average’ group for OECD countries – has nonetheless  slipped in this measure of achievement in reading, maths administered by the Programme for International Student Assessment . This is of concern, & there are probably multiple complex causes for our decline. Certainly the previous PISA commentary (2009) recommended that we pay attention to matters of inequality (There’s interesting commentary here, & also on the RNZ website.)

This morning’s Dominion-Post (I’m in Wellington at the moment, at a teaching symposium) carries a story giving a primary-teaching perspective.There are two key issues here: many primary teachers lack a science or maths background; and primary teachers in general are not well supported to teach these specialist sujects. (The removal of specialist science advisors – something I’ve commented on previously – did not help things.) This is important, because if students don’t gain a good understanding of these subjects – and good experiences of them! – during primary school, then they’ll basically be playing catch-up when they arrive in specialist secondary school classrooms.  Sir Peter Gluckman’s suggestion (in his report Looking ahead: science education in the 21st century) that each primary school have a ‘science champion’ would help here, but in the medium-to-long term it would probably be even better if intending primary school teachers received much greater exposure to the STEM subjects to begin with.

Should we worry? Yes, but I definitely agree with Fiona Ell, from the University of Auckland, who’s quoted in this morning’s Herald as saying:

People get very hung up on the ranking … because it’s like a Top of the Pops top 10 thing. I don’t think they should be ignored … but knee-jerk reactions to rankings are really dangerous in education systems.

So, there are issues that we need to address, and as Fiona’s pointed out, there are no quick fixes – we need to deal with them in a considered way that includes as many variables as possible (i.e. not just practices in schools).

One of those issues is highlighted by Sir Peter Gluckman, the Prime Minister’s Science Adviser, who’s said:

What’s worrying is that there seems to have been a decline in the people represented in the top end of the scale and an increase in the number of people at the bottom end of the scale.

And socioeconomic status may well play a part in this. From the Herald story:

New Zealand was one of just two countries in which socio-economic status had a strong connection to a student’s performance. Some countries’ education systems made up for social disadvantage, but this was not the case in New Zealand.

So any solution addressing the PISA results will of necessity be complex. It’s not going to be sufficient to look only at what’s going on in schools. Yes, support and professional development for STEM teaching across the compulsory sector will be needed. The quality of teaching is definitely important (for a student’s perspective see the Herald article). But without also seriously considering and attempting to deal with the social inequalities in this country, I suspect changes in the educational sector alone will not be enough.

September 20, 2013

charter schools can teach creationism after all

I first wrote about charter schools just over a year ago. At the time I was commenting on statements that such schools would be able to employ as teachers people who lacked teaching qualifications, wondering how that could sit with the Minister’s statements around achieving quality teaching practice. But I also noted concerns that charter (oops, ‘partnership’) schools could set their own curricula, as this would have the potential to expand the number of schools teaching creationism in their ‘science’ classes.

Well, now the list of the first 5 charter schools has been published: two of those schools is described (in the linked article) as intending to “emphasise Christian values in its teaching.” By itself that =/= creationism in the classroom – but yesterday Radio New Zealand’s Checkpoint program (17 September 2013) reported that the school’s offerings will probably include just that.

In addition the prinicipal has reportedly said that the school will teach “Christian theory on the origin of the planet.”

And today we’re told (via RNZ)

The Education Minister has conceded there’s nothing to prevent two of New Zealand’s first charter schools teaching creationism alongside the national curriculum.

Two of the five publicly-funded private schools, Rise Up and South Auckland Middle School, have contracts that allow a Christian focus.

The minister, Hekia Parata, said on Tuesday that none of the five schools would teach creationism alongside or instead of evolutionary theory.

But on Thursday she told the House two of the schools will offer religious education alongside the curriculum.

Ms Parata did not specify how the two would be differentiated in the classroom.

South Auckland Middle School has told Radio New Zealand it plans to teach a number of theories about the origins of life, including intelligent design and evolution.

Point 1 (trivial, perhaps?): South Auckland Middle School needs to look into just what constitutes a theory in science. (Hint: a theory is a coherent explanation for a large body of facts. “A designer diddit” does not remotely approach that.)

Point 2 (not trivial at all): Why do people responsible for leading education in this country think it acceptable for students to learn nonscience in ‘science’ classes? After all, the Prime Minister has commented on “the importance of science to this country.” Evolution underpins all of modern biology so how, exactly, does actively misinforming students about this core concept prepare those who want to work in biology later? Nor does teaching pseudoscience sit well with the increased emphasis on ‘nature of science’ in the NZ Curriculum.

This is really, really disappointing. We already have ‘special character’ schools which teach creationism in their classrooms (see herehere and here, for example). It’s irking in the extreme that state funding will be used to support the same in the new charter schools.

Create a free website or blog at WordPress.com.