Talking Teaching

February 25, 2018

what are the challenges for first-year core science courses?

This is another post based on a talk at FYSEC2017, & which I’ve also published on my bioblog.

Prof Karen Burke da Silva was the keynote speaker at Day 1 of the 2017 First-Year Science Educators’ Colloquium, held in Wellington. Her topic:Transforming large first year science classes: A comprehensive approach to student engagement. Currently at Flinders University, she’s been instrumental in setting up an ‘integrated teaching environment’ that’s seen a drop in withdrawals, and a marked increase in engagement, among their first-year STEM students.

If you’ve read my earlier FYSEC-focused post, you’ll know that student engagement was a hot topic at last year’s colloquium. Which isn’t surprising; as Karen noted, both NZ and Australian universities have trouble with attention, engagement, retention, and performance of their first-years, who face some significant challenges in transitioning from their smaller high-school classes to the large lecture rooms of universities. She commented that

how best to build a first-year program in sciences that allows for different student backgrounds, abilities and interests is a task that all first-year coordinators face.

Because students are so diverse, if we’re going to accommodate their various needs and backgrounds, we really need to know about those first. In Australia, the SSEE Project gathered data on both student and staff expectations and experiences (& whether the two converged) across all disciplines at Flinders, the University of Adelaide, and the University of South Australia. The decision to set this research project up was based on some reasonably concerning information:

  • Statistics show that of all students entering Australian universities one-third fail to graduate and of those students who withdraw from their programs over half withdraw in their first year.
  • Students preparing for tertiary study may do so individually or via school, government and university initiatives. Many students, however, still experience an early ‘reality shock’ during their first semester rather than a smooth transition to university.
  • The mismatch between students’ expectations and experiences has ramifications for their learning, satisfaction, retention and ultimately, their wellbeing.

Among the findings that Karen presented to us:

the majority of students were neutral about, or agreed with, the statement that secondary school education was an adequate preparation for university study;

students from schools offering the International Baccalaureate program outperformed those from all other schools on entering university (with students from state schools doing least well), & the difference was still reflected in GPAs at the end of that first year:  However, the difference between state and private schools disappeared over that time;

friends, university websites, and universities’ recruiting efforts had more effect on shaping students’ views about university study than teachers, guidance counsellors, family, new and traditional media outlets, and provided a more accurate reflection of what uni life is really like.

students’ expectations around what constituted a reasonable time interval for returning marked work to them were not matched by the reality: the majority expected it back in 2-3 weeks, but in reality most waited 3-4 weeks;

the great majority felt that receiving feedback on drafts would be very important to their learning – but most disagreed with, or were neutral about, the statement that they actually received such feedback. (While students may not be aware that there’s more to feedback than written comments on an assignment, providing feedback in a timely manner is something that most universities need to work on.)

When Karen arrived at Flinders, back in 2007, the STEM disciplines had a high fail rate of around 23%; this was particularly noticeable among mature students & those who hadn’t taken the final year of high school. The changes she & her team made to teaching delivery were intended to address this, but they would have the effect of enhancing the learning experience for every student. I found her ideas around this really exciting (although I suspect that those wedded to a more ‘traditional’ approach to delivery would be shaking their heads).

This is what the new program looked like: first up, the first semester of the year became ‘transitional’, ensuring that everyone was in the same place before entering semester 2, which was ‘extension’, taking students’ knowledge & understanding further. Along that were ‘pre-lecture’ classesA for students identified as lacking the normally-expected background in the subject, which resulted in the students having greater confidence in their ability to cope with the subject, plus increased motivation & understanding. And I loved  the idea of regular case-based ‘lectorials’, where the students were actively engaged in addressing the issues raised in each case study. Karen’s research showed that 98% of students reported that these classes enhanced their understanding of how biology relates to the real world.

Learning was further supported by peer-assisted study sessions, run by 2nd- & 3rd-year students (who received training for the role), which were part of the formal timetable and for which students could gain up to 5% of their final grade for attendance. Karen reported that these sessions were very well attended.

And of course, STEM subjects have labs. Karen told us that Australian universities are tending to reduce the lab component of STEM papers, such that most first-year papers have less than 30 hours of practical classes – this is a real pity as in general students really enjoy labs and the practical classes (if properly focused) can enhance understanding of key concepts as well as teaching a range of practical skills. (I’m often perplexed by suggestions that we move to on-line ‘labs’, as both lab & field work have a lot of practical & interpersonal skills development associated with them, & that’s something that you don’t get by interacting with a mouse & a screen.) At Flinders, Karen told us that a science paper would have 2, two-hour, lab classes each fortnight: the first session is all about preparation & planning, & the second is the actual practical work. It seems to me that this would give students a good experience of actually ‘doing’ science – something that the students agreed with, as well as reporting that they liked becoming more responsible for their own learning.

The research projects that all science students at Flinders do in their first year of study would also have that effect, although they have to be scaffolded into these assignments – which also provide an excellent opportunity to learn many of the personal skills needed for successful teamwork. (This is another of those competencies that universities often say their students gain, but for which they often don’t really provide much in the way of carefully-designed learning opportunities.)

I was fascinated to hear that Karen also includes art, & other creative tasks, in her assessment tools – this is great as it allows students to recognise that science contains an element of creativity. She commented that having the first assignment as an art project both helps to remove the fear associated with doing a science assignment, and helps connect the teacher with their students. The question she sets is a very simple one: what does biology mean to you? These were self-graded, something that would make many science lecturers raise their eyebrows! – but apparently in moderating the results Karen’s found that 90% of the class awarded themselves the same marks that she would. Of the remaining 10%, those who graded themselves lower tended to be female, while those giving a higher mark were male. The students submitted some amazing work.

Apparently other staff weren’t always happy as they felt that students didn’t give their own assignments the same attention – but there was a happy outcome: they began to look at ways of offering the opportunity for similar assignments, with a real-world focus, in their own papers. I’d do that myself, given that these changes in delivery & assessment had a marked impact in terms of student outcomes, with fewer failures & withdrawals.

And we were reminded that students need to feel some connection with the institution & with those teaching them. (There’s quite a lot of literature available on this, including TLRI studies from NZ & other papers like this.) Having that contact offers opportunities to find out how the paper is progressing, & also to identify any problems that students might be having & to refer the students to appropriate support if necessary. I think it would also help lecturers to understand the school system that our students have come from; having that understanding is crucial in optimising the transition from secondary to tertiary learning environments.

We ended with some questions around the value of recording lectures. My institution does this; I suspect most universities in NZ do. Feedback from students indicates that the practice is helpful for international students, those wanting to review their understanding, & for those who’ve had to miss a class; Ican certainly see the peak in views just before a test! But we’re finding that many students neither attend class, nor view the recordings, & while some may muddle through like this, others don’t. So, we need to come up with a way to change students’ mindsets – and for their seemingly insatiable demand for recordings & lecture notes & previous exams. (This is something that’s definitely a carry-over from school, I think.) So, how do we deal with that demand, that sense of entitlement, that lack of engagement? I’m not sure I have the answers. Do you?

Karen thinks recorded lectures have changed face of education in a very negative way. Good for internationals, for high-achievers, for review. But the mid-range group don’t show, don’t view the recordings either. If we’re to continue with recordings then we need to change the student mindset as well.

A For those interested in the concept of prelectures, here’s the abstract from one of Karen’s papers on the subject:

First year biology students at Flinders University with no prior biology background knowledge fail at almost twice the rate as those with a background. To remedy this discrepancy we enabled students to attend a weekly series of pre-lectures aimed at providing basic biological concepts, thereby removing the need for students to complete a prerequisite course. The overall failure rate of first year biology students was lowered and the gap between students with and without the background knowledge was significantly reduced. The overall effect of the implementation of pre-lectures was a more appropriate level of teaching for the first year students, neither too difficult for students without a prior biology background and no longer too easy (or repetitive) for students with high school level biology.


February 13, 2018

engagement & experiences in undergraduate science education

This post is based on a presentation at the 2017 First-Year Science Educators’ Colloquium (FYSEC), and is also published on the Bioblog. 

At FYSEC2017Gerry Rayner led a session called “Undergraduate science education in the 21st century: issues, needs, opportunities”.

Gerry kicked off by commenting that education has a greater impact – on students, teachers, and the wider society in which education systems are embedded – when people work together across a range of disciplines. What are the issues currently facing undergraduate science in NZ & Australia, he asked, and how do we address them? This was something that generated quite a bit of subsequent discussion. On the list:

  • rising enrolments: Gerry commented that in Australia, the removal of caps on enrolment, together with international demand, meant that some predictions of student numbers saw growth of perhaps 30% over the next few years’
  • increased diversity – not only cultural and ethnic diversity, but also a wider range of prior knowledge and academic achievement on entry;
  • as fees increase, and with that, student debt, we’re already seeing a change in attitude: students see themselves as customers, paying for a product, and can expect particular outcomes;
  • lower on-campus attendance may well have an effect on student engagement (and comments from attendees showed that this is something we all face) – but, to support increased numbers, we are pushed to provide more on-line delivery;
  • this means that educators need to provide not only more on-line content and assessment, but also the sort of meaningful interactions that enhance student engagement;
  • the need – Gerry described it as a moral obligation, & I agree that the obligation is there – to provice meaningful opportunities for students to enhance their employability. That is, it’s not all about mastery of content, and students also need to gain a whole range of work-related competencies and capabilities.

Gerry then introduced some data from a report on student engagement in New Zealand universities (Radloff, 2011), which defines this thing called ‘engagement’ as

students’ involvement with activities and conditions that are likely to generate high-quality learning, [something that] is increasingly seen as important for positive learning outcomes

and comments that

measures of student engagement provide information about individuals’ intrinsic involvement with their learning, and the extent to which they are making use of available educational opportunities. Such information enhances knowledge about learning processes, can be a reliable proxy for understanding students’ learning outcomes and provides excellent diagnostic measures for learning enhancement activities.

This wide-ranging report is based on data from the AUSSEA survey of student engagement, & includes chapters on Maori and Pasifika student engagement; engagement in relation to field of study; the experiences of international students; relationships between engagement, preparation for study, and employment; students’ departure intentions; differences between part-time & full-time students; and the impact of distance education cf on-campus learning on student engagement. The survey has 6 engagement scales (academic challenge, active learning, student/staff interactions, enriching educational experiences, supportive learning environment, & work-integrated learning), & 7 outcome scales (higher-order thinking, general learning outcomes, general development outcomes, career readiness, average overall grade, departure intention, and overall satisfaction). In Radloff’s report the AUSSE data from NZ were also benchmarked against responses from Australian, South African, and US undergraduate students.

The results, said Gerry, were generally good but (& the report also makes this clear) not entirely comforting. In measures of engagement, for example, NZ students rated the quality of staff-student interactions quite poorly (an average score of 18 compared to 35 in the US); and a low proportion (across all countries) felt that they had enriching educational environments – while at the same time strongly agreeing that they had quite a supportive learning environment!

And on the ‘outcomes’ scales, only about a third of NZ first-year students felt that they had gained some level of career readiness through their uni studies. At the same time, around 30% of them had considered leaving university (yes, there were a range of reasons underlying this). Even by the end of the degree only 35% felt that they were really career-ready, & 29% had considered leaving during the year. This is not particularly positive.

Overall, for the natural & physical sciences, NZ students felt that: they didn’t get a lot of support from their university; they were less likely to answer questions or get involved in discussions; they had low levels of interaction with others in their class; felt they had lower career readiness, and lower levels of workplace-integrated learning experiences, than students from other disciplines (in fact, in this 2011 report only 9% reported involvement in some sort of placement or work experience); tended to have jobs unrelated to their future study/career hopes; and were less likely than those from other disciplines to feel that their study at uni helped prepare them for the workplace.

And again, there’s that 30% of them who either considered leaving, or planned to leave, before completing their studies (but those reporting working regularly with others in class were much less likely to be in this group). However, it’s not all doom & gloom on that front:

while nearly one-third of New Zealand’s university students have seriously considered leaving their university before completing their study, students are generally very satisfied with their experience at university. [Around 75%] rated the quality of academic advice received as ‘good’ or ‘excellent. [And more than 80%] were satisfied with their overall educational experience… The vast majority … indicated that given the chance to start over, they would attend the same university again.

Nonetheless, Gerry argued (& I agree), it appears that as a country we don’t prepare science students particularly well for the workplace – despite the fact that we’d hope that they will be contributing to the ‘knowledge economy’. So the delivery of workplace-integrated learning (WIL) becomes something that STEM faculties need to look at more closely. We also need to work on improving student perceptions of the nature of their learning experiences & outcomes. Here, Gerry suggested that experiential learning that helps develop skills as well as content knowledge, peer tutoring, innovative use of technology, case studies, group work, and role playing can all help – and can also be a part of preparing students for the WIL component of their learning, and for the workplace after university. (Of course, this means that institutions also need to provide ongoing PD for their teaching staff, to support them in using new means of delivery.)

Students benefit from WIL, as they can get a better understanding of the world beyond the universities. This is true even for projects run on campus, so long as there are industry links of some sort and the students are working on authentic problems that let them apply their content knowledge in real-world contexts. But WIL has benefits for academics as well, as the improved connections with employers can deliver research opportunities. It requires effort (& investment) to set up, but the outcomes for institutions and students would make this worthwhile.

A AUSSE: the Australasian Survey of Student Engagement

A.Radloff (ed.) (2011) Student engagement in New Zealand’s universities. pub. ACER & Ako Aotearoa. ISBN 978-0-473-19590-8

October 27, 2014

widening the definition of what constitutes scientific communication and publishing

Filed under: university — Tags: , , , , — alison @ 4:35 pm

This blog post at SkepticalScalpel really struck a chord. Entitled “Should social media accomplishments be recognised by academia”, it compares the number of citations the author’s received for published papers with the number of hits on a blog post reviewing original research. And finds there’s no contest:

Three years ago, I wrote “Statistical vs. Clinical Significance: They Are Not the Same,” which reviewed a paper on sleep apnea …

That post has received over 13,400 page views, certainly far exceeding the number of people who have read my 97 peer-reviewed papers, case reports, review articles, book chapters, editorials, and letters to journal editors.

The SkepticalScalpel author also notes that this sort of on-line peer-review and discussion of data can have rapid, effective results:

Last year, some Australians, blogging at the Intensive Care Network, found that the number needed to treat stated in a New England Journal paper on targeted vs. universal decolonization to prevent ICU infection was wrong. They blogged about it and contacted the lead author who acknowledged the error within 11 days. It took the journal 5 months to make the correction online.

PZ Myers has also advocated for such on-line, social-media-mediated, peer review, pointing to microbiologist Rosie Redfield as a great example of how this works. (The discussion at that last link shows ‘open’ peer-review in operation – and posts like that will have attracted a far wider audience than the original paper.)

But wait, there’s more! At Scientific American, Simon Owens writes about Kathleen Mandt: a scientist who’s become part of probably the biggest two-way stream of communication between scientists and the general public in the world, via Reddit.

R/science is a default subreddit, meaning it’s visible to people visiting even if they aren’t logged in. According to internal metrics, r/science draws between 30,000 and 100,000 unique visitors a day. It’s arguably the largest community-run science forum on the Internet. And starting in January r/science officially launched its own Science AMA series, and very quickly scientists who are producing interesting, groundbreaking research but not widely known to others outside their fields began answering questions on the front page of a site that is visited by 114 million people a month (this includes registered and casual visitors.).

Most scientific research is published in expensive journals, some of which are not available in smaller libraries. And the vast majority of findings never receive media coverage. “Really, the only way people get to find out about new research is if they have journal access or if they read the short-form news story that can be skewed by whatever journalist is covering it,” says Chris Dawson, another r/science mod. “If you had questions about the study then there wasn’t a good way to get them answered, and now you can.” Virtually overnight, Reddit had created the world’s largest two-way dialogue between scientists and the general public.

Of course there are limitations to this mode of communication. Questions may be off the point, ie not directly related to the research under discussion. This is hardly surprising, but it’s something that a good science journalist can avoid. (However, good science journalism, in the mainstream media, is a fairly rare beast.) And the r/science moderators do have to make some careful decisions around which researchers to invite into the forum.

But overall, in terms of getting information out there with the potential for meaningful, rapid interaction with one’s audience, and a much bigger audience at that, science blogs and venues like Reddit’s r/science probably win hands-down over more conventional modes of publication. As Owens says,

This year’s Science AMAs overall reveal that r/science fulfills a public need that’s unforeseen, unknown, unaddressed or not fully embraced by the scientific community. In a world where the general public often finds it frustratingly difficult to access scholarly journals, demand remains for a way to connect scientists and their work with nonscientists. With the rise of MOOCs and other digital tools such as Reddit, science communication has expanded well beyond its traditional confines in the ivory tower.

So is it time, as Skeptical Scalpel says, for measures of scholarly output to be broadened when it comes time for promotion?


October 26, 2013

doing citizen science

This is something I wrote for my ‘other’ blog, but I thought I’d post it here as well as the whole ‘citizen science’ thing has considerable value for school-level education, and I thought some of you would probably have some valuable insights into/comments on the subject.

The other day I was asked for some advice on setting up a ‘citizen science’ program. The people asking were looking at developing outreach: giving talks, helping with local science-y initiatives, setting up websites, & so on. I responded that it all sounded good, and it was great that they were looking at ways of communicating about the science they were doing, but that it didn’t really sound like my understanding of the term ‘citizen science’. (I hasten to add that I’m not an expert: I do a lot of science communication, but this is not the same thing at all.)

The idea of citizen science has been around for quite some time – there are papers on the subject dating to the 90s – but in New Zealand I would hope it’s developing a higher profile in the scientific community with the advent of the NZ Science Challenges & their requirement to get ‘the public’ more engaged with the science that we’re doing in this country.

And under the citizen science model this requires some serious thinking about the logistics, because one thing it’s not, is scientists telling laypeople what they’ve been doing. Instead, it sees school children, their whanau, members of various community groups, all getting involved in an organised and coordinated way with the actual research: making observations, collecting data, discussing the results, looking at how to apply them in their area. This is a lot more complex in terms of organisation than arranging to give a talk or write a pop-science article (or a blog!).

Jonathan SIlvertown defines a citizen scientist as “a volunteer who collects and/or processes data as part of a scientific enquiry” (2008: 467), and notes that such projects are becoming particularly common in ecology and environmental science. (And it’s not a new initative: Bonney et al (2009) point out that US lighthouse keepers got involved in collecting data on bird strikes back in the 1880s. Perhaps we could regard Charles Darwin as a citizen scientist, particularly at the beginning of his career – he certainly wasn’t doing it as part of a paying job!) He goes on to say that “[t]oday, most citizen scientists work with professional counterparts on projects that have been specifically designed or adapted to give amateurs a role, either for the educational benefit of the volunteers or for the benefit of the project. The best examples benefit both” (2008: 467). This makes it clear that planning to involve citizen scientists in a given project has to part of the initial project development; it can’t really be an add-on at the end. While many of the projects Silvertown lists are essentially surveys and censuses, Bonney et al (2009) provide a model for doing citizen science to answer particular scientific questions in a way that also enhances science literacy and engagement with the subject.

Bonney & his colleagues work at the Cornell Lab of Ornithology, which over the years has seen the results of many ‘citizen-science’ projects published in a range of journals. At the same time they’ve noted increases in scientific literacy and engagement with science among many of their lay participants. These are very positive outcomes, and they’ve put together a model for setting up such initiatives and assessing their success. Commenting that “e have found that proj- ects whose developers follow this model can simultaneously fulfil their goals of recruitment, research, conservation, and education “, Bonney & his team list the following steps/stages in setting up & running a successful citizen-science project:

1. Choose a scientific question – it will probably be one that stretches across a relatively long period of time, or a large geographic area.

2. Form a scientist/educator/technologist/evaluator team – this must include individuals from multiple disciplines – the scientist to develop the question, methodology & analysis tools; the educator to field-test methods with the participants, develop support materials, etc; and so on.

3. Develop, test, and refine protocols, data forms, and educational support materials: it’s essential that participants receive clear protocols for collecting their data (using clear simple forms) & that they receive help in understanding those protocols and passing their data on to the researchers.

4. Recruit participants. How this is done is going to depend on whether the project is open to all or is intended for a particular cohort eg school students.

5. Train participants, so that they gain confidence in their ability to collect and submit data, & know they’ll be supported as and when necessary.

6. Accept, edit, and display data. “Whether a project employs paper or electronic data forms, all of the information must be accepted, edited, and made available for analysis, not only by professional scientists but also by the public. Indeed, allowing and encouraging participants to manipulate and study project data is one of the most educational features of citizen science.” [my emphasisi]

7. Analyse and interpret data. This can be tricky due to the often‘coarse’ nature of the data-sets collected by participants,  & made more so if there are (for example) errors due to species mis-identification or misunderstanding of protocols.

8. Disseminate results. While this will involve scientific publications, it’s also important – & essential – that the results and their interpretation & application are also communicated with the citizen scientists who helped to generate them.

9. Measure outcomes. These will be both scientific and educational. The former are fairly straightforward to quantify: number of papers published, conference presentations given, or students successfully completing theses, for example. The educational outcomes may be harder to define, but Bonney et al suggest assessing things like the length of time people were involved with the project; how often they accessed web sites associated with the project; whether their understanding of the science content improved over the duration of the research; whether their understanding of the nature of science was enhanced; positive changes in attitudes towards science; better science-related skills; the number of participants stating increased interest in a career in science.

Doing all this will of necessity require education or social science research techniques, so there’s someone else to add to the team. Yes, there are costs, in dollar terms but also in terms of the time taken to set up a rigorous project with benefits for all involved. But there is potential for those benefits to be significant.

R.Bonney, C.B.Cooper, J.Dickinson, S.Kelling, T.Phillips, K.V.Rosenberg & J.Shirk (2009) Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience 59(11):977-984

J.Silvertown (2008) A new dawn for citizen science. Trends in Ecology & Evolution 24(9): 467-471

September 23, 2013

teach creationism, undermine science

This is something I originally wrote for my ‘other’ blog.

Every now & then I’ve had someone say to me that there’s no harm in children hearing about ‘other ways of knowing’ about the world during their time at school, so why am I worried about creationism being delivered in the classroom? 

Well, first up, my concerns – & those of most of my colleagues – centre less on whether teaching creationism/intelligent design is bringing religion into the science classroom1, & more on how well such teaching prepares students for understanding and participating in biology in the 21st century. For example, if a school can make statements like this:

It is important that children and adults are clear that there is one universal truth. There can only be one truthful explanation for origins that means that all other explanations are wrong. Truth is truth. Biblical truth, scientific truth, mathematical truth, and historical truth are in harmony2.

and go on to list the “commonly accepted science we believe in”, then their students are not gaining any real understanding of the nature of science. And the statements regarding the science curriculum that I’ve linked to above indicate that it’s not just biology with which the school community has an issue. Physics, geology, cosmology: all have significant sections listed under “commonly accepted ‘science’ we do not believe in”3. (Did you notice the quote marks around that second mention of science?)

Science isn’t a belief system, & while people are entitled to their own opinions they are not entitled to their own facts. Any school science curriculum that picks & chooses what is taught on the basis of belief is delivering (to quote my friend David Winter) “a pathetic caricature of actual science, … undermin[ing] science as a method for understanding the world and leav[ing] the kids that learned it very poorly prepared to do biology in the 21st century.” Or indeed, to engage with pretty much any science, in terms of understanding how science is done and its relevance to our daily lives. And if we’re not concerned about that lack of science literacy, well, we should be.


although I do think this is a problem too.

2 with the subtext that the first ‘truth’ takes precedence.

Taken to its extreme, the belief system promoted in teaching creationism as science can result in statements such as this:

We believe Earth and its ecosystems – created by God’s intelligent design and infinite power and sustained by His faithful providence – are robust, resilient, self-regulating, and self-correcting, admirably suited for human flourishing…

…We deny that Earth and its ecosystems are the fragile and unstable products of chance, and particularly that Earth’s climate system is vulnerable to dangerous alteration because of miniscule changes in atmospheric chemistry.

This does not look like a recipe for good environmental management to me.


September 20, 2013

charter schools can teach creationism after all

I first wrote about charter schools just over a year ago. At the time I was commenting on statements that such schools would be able to employ as teachers people who lacked teaching qualifications, wondering how that could sit with the Minister’s statements around achieving quality teaching practice. But I also noted concerns that charter (oops, ‘partnership’) schools could set their own curricula, as this would have the potential to expand the number of schools teaching creationism in their ‘science’ classes.

Well, now the list of the first 5 charter schools has been published: two of those schools is described (in the linked article) as intending to “emphasise Christian values in its teaching.” By itself that =/= creationism in the classroom – but yesterday Radio New Zealand’s Checkpoint program (17 September 2013) reported that the school’s offerings will probably include just that.

In addition the prinicipal has reportedly said that the school will teach “Christian theory on the origin of the planet.”

And today we’re told (via RNZ)

The Education Minister has conceded there’s nothing to prevent two of New Zealand’s first charter schools teaching creationism alongside the national curriculum.

Two of the five publicly-funded private schools, Rise Up and South Auckland Middle School, have contracts that allow a Christian focus.

The minister, Hekia Parata, said on Tuesday that none of the five schools would teach creationism alongside or instead of evolutionary theory.

But on Thursday she told the House two of the schools will offer religious education alongside the curriculum.

Ms Parata did not specify how the two would be differentiated in the classroom.

South Auckland Middle School has told Radio New Zealand it plans to teach a number of theories about the origins of life, including intelligent design and evolution.

Point 1 (trivial, perhaps?): South Auckland Middle School needs to look into just what constitutes a theory in science. (Hint: a theory is a coherent explanation for a large body of facts. “A designer diddit” does not remotely approach that.)

Point 2 (not trivial at all): Why do people responsible for leading education in this country think it acceptable for students to learn nonscience in ‘science’ classes? After all, the Prime Minister has commented on “the importance of science to this country.” Evolution underpins all of modern biology so how, exactly, does actively misinforming students about this core concept prepare those who want to work in biology later? Nor does teaching pseudoscience sit well with the increased emphasis on ‘nature of science’ in the NZ Curriculum.

This is really, really disappointing. We already have ‘special character’ schools which teach creationism in their classrooms (see herehere and here, for example). It’s irking in the extreme that state funding will be used to support the same in the new charter schools.

May 2, 2013

science challenges & science education

The National Science Challenges have been announced – and have already received a lot of attention (including on Sciblogs, with posts by my colleagues GrantSiouxsie, and John – who also points at where the money’s going). What I’d like to address here is the comment by the Panel that it

was concerned by the lack of significant proposals in educational research

I have to admit that my first response to that was, well d’oh! Because, well, the public discussion was around national science challenges, I suspect that for many (most?) submitters the focus was to come up with a science-based proposal. After all (& please note bulging cheek ensconcing my tongue at this point), isn’t science education something that schools & other seats of learning ‘do’, rather than requiring science research? Hopefully not many scientists really think that way, & it’s great to see the additional Challenge, “Science & New Zealand Society” with its two goals (the first a science goal, while the second is societal):

To ensure the science capacities and literacy of New Zealand society so as to promote engagement between S[cience] & T[echnology] and New Zealand society, in turn enhancing the role played by science in advancing the national interest.

To allow New Zealand society to make best use of its human and technological capacities to address the risks and Challenges ahead. This requires the better use of scientific knowledge in policy formation at all levels of national and local government, in the private sector and in society as a whole.


Both are relevant to what follows here.

Let’s look more closely at the question of science literacy/appreciation/education for citizenship. The chair of the Panel, Sir Peter Gluckman, has previously made it clear that we need to do much more in engaging young people with science, to the extent of developing a science curriculum that focuses far more on science literacy than on accumulation of science knowledge. But what constitutes science literacy? This is something I’ve written about previously, & my fellow Scibloggers and I discussed it between ourselves more recently. So I was interested to find a set of nine science literacy ‘themes’ listed and expanded upon in a recent paper (Bartholomew & Osborne, 2004):

scientific methods and critical testing

science & certainty

diversity of scientific thinking

hypothesis and prediction

historical development of scientific knowledge


science and questioning

analysis and interpretation of data

cooperation and collaboration in the development of scientific knowledge

And while we might not agree on the relative order of these themes, or the completeness of the list, but they do give us something to go on with. (I’m going to talk about the formal education system for the moment – but I’m perfectly well aware that there’s much more than that to public engagement with science! Let’s just treat this as a starting point for discussion.)

Now, I’d like to think that the current NZ Science curriculum gives a good basis for developing these skills & attributes in all students Right Now, regardless of whether or not they intend to go on to study science at tertiary level. And let’s face it, most won’t, so we surely have to work on engagement with and understanding of what science is about, for all students. in fact, that’s a tension I struggle with myself: a proportion of my first-year biology students are taking the subject purely for interest, & in some cases haven’t studied the subject before. I want them to come away with an appreciation of the wonder and worth of the subject in their lives, as much as I want them to accumulate biological knowledge. It’s a tricky balancing act.

Anyway, while I might like to think that about the curriculum document, in reality I suspect that it doesn’t yet deliver. And that’s something that’s unpacked further by Bartholomew & Osborne, who note that there are a number of factors that affect teachers’ “ability to teach effectivelyabout science”.

One of those factors is the teachers’ own understanding of what science is all about, as opposed to their body of content knowledge. NB Please note, at this point, that this is not a criticism of teachers and the demanding work that they do; it’s a question of whether the training and experiences we offer our teachers prepare them well for this particular aspect of teaching science.

The researchers found that a reasonable proportion of the teachers they worked with were not really confident in their own ability to teach lessons based on the ideas embedded in those themes. This was partly due to uncertainties about their own knowledge, and partly around feeling that they lacked the classroom skills to deliver such a program. Which, of course, raises issues around provision of professional development opportunities (with the associated resourcing).

Related to that is their own engagement with the subject. OK, if you’re teaching the subject as a specialist science teacher, I’m guessing that you took this role on because you enjoy the subject and want to share that. But if someone’s a primary school teacher with very limited exposure to science during their training, then the story might be very different.

And so that would be a fruitful area for research, in NZ (and at this point someone is probably going to tell me that they’re Already Doing It): what is the actual level of science literacy – using, for example, those 9 themes listed above – in NZ science teachers at all levels? And how does that translate into classroom practices? And – if the answer is, not as well as we’d like – what do we do about it?

Teachers’ ability to enhance learning about science (as opposed to of science) is also affected by factors outside their classrooms. For example, the pressure is on, at senior school level, to ensure students do as well as possible in national assessment – which, for all the changes associated with NCEA, remains largely content-based. And classroom time is limited, so it’s easy to see how there can be more focus on content & less on the other desirable attributes. As Bartholomew & Osborne comment,

developing a questioning and sceptical attitude to scientific knowledge claims in students might actually be disadvantageous.

Perhaps that also needs to change. [Pace, Schol Bio examiners!]


H.Bartholomew, & J.Osborne (2004) Teaching students “ideas about science”: five dimensions of effective practice. Science Education 88: 655-682 doi: 10.1002/sce.10135

October 13, 2012

why kids should grade teachers

Next week my first-year biology students will be doing an appraisal of this semester’s paper, & of those academic staff involved in teaching it. They’re asked about the perceived difficulty of the paper, the amount of work they’re expected to do for it, whether they’ve been intellectually stimulated, the amount of feedback they receive on their work, how approachable staff are, & much else besides. (The feedback one was always my worst scoring attribute – until I asked the students what they thought ‘feedback’ met. It turned out that they felt this described one-to-one verbal communication. We had a discussion about all the other ways in which staff can give feedback – & the scores went up.) The results are always extremely useful, as not only to we find out what’s working, but we also discover what’s not (or at least, what the students perceive as not working) & so may need further attention.

Anyway, my friend Annette has just drawn my attention to a lengthy post in The Atlantic, by Amanda Ridley. It made fascinating reading.

In towns around the country this past school year, a quarter-million students took a special survey designed to capture what they thought of their teachers and their classroom culture. Unlike the vast majority of surveys in human history, this one had been carefully field-tested. That research had shown something remarkable: if you asked kids the right questions, they could identify, with uncanny accuracy, their most – and least – effective teachers.

Ridley, reporting for the Atlantic, was able to follow a 4-month pilot project that was run in 6 schools in the District of Colombia. She notes that about half the states in the US use student test data to evaluate how teachers are doing.

Now, this approach is fraught with difficulty. It doesn’t tell you why children aren’t learning something, for example (or why they do, which is just as interesting). And it puts huge pressure on teachers to ‘teach to the test’ (although Ridley says that in fact “most [American] teachers still do not teach the subjects or grade levels covered by mandatory standardized tests”). It ignores the fact that student learning success can be influenced by a wide range of factors, some of which are outside the schools’ control. (And it makes me wonder how I’d have done, back when I was teaching a high school ‘home room’ class in Palmerston North. Those students made a fair bit of progress, and we all learned a lot, but they would likely not have done too well on a standardised test of academic learning, applied across the board in the way that National Standards are now.)

So, the survey. It grew out of a project on effective teaching funded by the Bill & Melinda Gates Foundation, which found that the top 5 questions – in terms of correlation with student learning – were

  1. Students in this class treat the teacher with respect.
  2. My classmates behave the way my teacher wants them to.
  3. Our class stays busy and doesn’t waste time.
  4. In this class, we learn a lot almost every day.
  5. In this class, we learn to correct our mistakes.

and the version used with high school students in the survey Ridley writes about contained 127 questions. That sounds an awful lot, to me, but apparently most kids soldiered on & answered them all. Nor did they simply choose the same answer for each & every question, or try to skew the results:

Students who don’t read the questions might give the same response to every item. But when Ferguson [one of the researchers] recently examined 199,000 surveys, he found that less than one-half of 1 percent of students did so in the first 10 questions. Kids, he believes, find the questions interesting, so they tend to pay attention. And the ‘right’ answer is not always apparent, so even kids who want to skew the results would not necessarily know how to do it.

OK – kids (asked the right questions) can indicate is a good, effective teacher. What use is made of these results, in the US? The researchers say that they shouldn’t be given too much weighting, in assessing teachers – 20-30% – & only after multiple runs through the instrument, though at present few schools actually use them that way. This is important – no appraisal system should rely on just one tool.

That’s only part of it, of course, because the results are sent through to teachers themselves, just as I get appraisal results back each semester. So the potential’s there for the survey results to provide the basis of considerable reflective learning, given the desire to do so, & time to do it in. Yet only 1/3 of teachers involved in this project even looked at them.

This is a problem in the NZ tertiary system too, & I know it’s something that staff in our own Teaching Development Unit grapple with. Is it the way the results are presented? Would it be useful to be given a summary with key findings highlighted? Do we need a guide in how to interpret them? Do people avoid possibly being upset by the personal comments that can creep into responses (something that can be avoided/minimised by explaining in advance the value of constructive criticism – and by being seen to pay attention to what students have to say)?

Overall, this is an interesting study & one whose results may well inform our own continuing debate on how best to identify excellent teaching practice. What we need to avoid is wholesale duplication and implementation in our own school system without first considering what such surveys can & can’t tell us, and how they may be incorporated as one part of a reliable, transparent system of professional development and goal-setting. And that, of course, is going to require discussion with and support from all parties concerned – not implementation from above.

August 22, 2012

charter schools (from letters to the editor)

Usually when I choose to base a post on the ‘letters’ section of a newspaper, it’s because something that someone’s written has rather got my goat. This time – this time, it’s because I agree with the sentiments & feel they warrant a wider audience & further analysis.

The Government wants to introduce charter schools, apparently, to solve issues of under achievement. It points to students failing to achieve NCEA Level 2 as justification for this policy. In fact, if the Government actually bothered to look at NCEA data, it would see that pass rates have been rising over the past decade, something achieved without charter schools.

And in fact, the NZ Herald ran a story on this in early 2011.

Studies clearly show that the most effective way to assist schools to lift achievement levels is employing trained teachers and providing quality professional development. Charter schools can employ untrained teachers and the Government has cut funding for much of the professional development it offered.

As I’ve said previously, it’s hard to see how using untrained teachers is going to improve teacher quality.

New Zealand has a very good education system. In countries with poorer education systems than ours, with greater academic under achievement, charter schools have failed to make any significant improvement to under achievement. So, if the Government wants to make a dent in education under achievement, why import policies that have failed overseas. Failure simply replicates failure.

The evidence on success (or otherwise) of charter schools is mixed. In some US states, for example, they seem to have a marked positive effect on learning outcomes for their students. In others, not so much. We’re told that in NZ, charter – sorry, ‘partnership’ – schools will be run following best overseas practice; it would be useful to hear more about what that will entail, sooner rather than later.

In that last post, I also expressed concern about the potential for charter schools – which, let us remember, will be state-funded – to include subjects such as creationism in their curricula. A ‘Stuff’ piece by Kelsey Fletcher expands on this, describing the intention of one group keen to run a charter school to use the ‘In God’s Word’ philosophy (something that would somehow still be able to be ‘marked’ against the Cambridge curriculum – presumably only if the evolutionary underpinnings of the biology curriculum component are ignored). Associate Education Minister, John Banks, tells us we don’t need to worry (the following is from the ‘Stuff’ item):

John Banks said the ministry had received a lot of correspondence, including complaints about public funding of faith-based education. He would not comment on the trust’s charter plans. “There’s no proposed partnership to consider, because we haven’t received any formal applications, and none have been called for,” Banks said. “The first schools open in 2014, and expressions of interest will be called for next year.”

I would feel more sanguine about this whole process if the nature of charter schools, and what they can and cannot offer in their curriculum, was set out clearly well in advance. Finding out after the event is not an appropriate option.


August 21, 2012

academic olympics fail to gain government support

This is a guest post – I’m running it on behalf of my friend & colleague Dr Angela Sharples.  Angela is the current chair of OlympiaNZ (the umbrella organisation for the various NZ Olympiad committees) and leads NZ International Biology Olympiad. She received the Prime Minister’s Science Teacher Award in 2011. I completely agree with her comments; like her, this is an issue I have very strong feelings about & I believe her comments deserve a wider audience. (Cross-posting from SciblogsNZ.)

At a time when we celebrate all things sporting we should reflect on our attitudes towards success in all forms of endeavour in New Zealand. The Olympics showcase the world’s best in sporting endeavour and we rightly look up to these elite athletes and admire the effort and dedication it took for each and every one of these athletes to reach the top of their field. The personal attributes required for them to even participate at the Olympics are transferable to all areas of performance in life and so we celebrate these athletes, admire them and aspire to like them. They are role models that encourage younger athletes from primary school to university level to participate in the sport of their choice and to dream that with hard work and dedication they too may reach Olympic level.

The government recognises this social benefit of elite sports and funds it accordingly, through SPARC and the high performance programmes. They have their eye on the long term benefits that participation in sport at the elite level provides to the wider New Zealand community. The government also recognises that New Zealand must foster innovation through a responsive, high performance education system if New Zealand is to remain globally competitive in a rapidly changing world.  Unfortunately, whilst the government has
published any number of reports on the importance of Science and innovation in New Zealand we see very little action on establishing and supporting programmes which foster such excellence.

Just last week, the New Zealand International Biology Olympiad withdrew from hosting the International Biology Olympiad here in New Zealand in July 2014. This prestigious international event challenges and inspires the brightest young secondary school students from 60 countries (and the number of member countries continues to grow) to deepen their understanding of biology and promotes a career in science. The focus is on the importance of biology for society, especially in areas such as biotech, agriculture and horticulture, environmental protection and biodiversity. These are all areas of academic endeavour crucial for New Zealand’s economic success in the future. Hosting this event in New Zealand was a chance to showcase our innovative education system and biological research to some of the world’s top academics and to inspire our own students to develop the dedication and put in the sheer hard work required to reach this highest level of academic endeavour. It is an opportunity lost!

Unlike our sporting Olympians our academic Olympians receive little support from the government and even less acknowledgement and celebration of their success. New Zealand has performed outstandingly well in the International competitions since we first competed in 2005, winning 16 Bronze medals, 7 Silver and 1 Gold Medal. These high performing students are New Zealand’s economic future and yet few in the country are even aware of their achievement.

Until we apply the same high performance strategies to our science and innovation system in New Zealand that we utilise in sports we will continue to talk about the importance of fostering excellence in science and innovation whilst we watch our competitors on the global stage outperform us. And we will continue to lose our best young minds to countries where their contribution is valued.

Older Posts »

Create a free website or blog at