Talking Teaching

June 22, 2020

thoughts on the proposed changes to NCEA

This post was first published on the Bioblog.

Many readers will probably have read this RNZ article (or heard the related interview), or seen calls for consultation on the Ministry of Education’s suggested changes to the number of subjects – and achievement standards – on offer to year 11 students.
I’ve been following (& participating, where I can) all this with colleagues and friends, and thought I’d share some of my thoughts here. But before I get onto that, I’ll point out that there’s been a fair bit of consultation even before we got to the point where these materials have gone out, in their turn, for feedback. That process began in 2018 and resulted in a “change package“. This was published in May 2019, and I really recommend reading it carefully as it provides the rationale for the latest 2 rounds of consultation (about the draft L1 Science standards & their supporting material, and about the number of individual subjects that should be offered to year 11 students.
In the interests of full disclosure, I’m a member of the Subject Expert Group (SEG) that is working on the draft L1 Science achievement standards.
So, the SEG members were tasked by the Ministry with developing four Science achievement standards (ASs), but that decision on the number of standards was based on a lot of feedback from a wide range of sector & interest groups, which signalled very clearly a need to reduce the complexity of NCEA & reduce the number of standards¹.
I’ll admit that one of my concerns regarding these two recent consultation rounds is the overlap between requests for feedback about the initial drafts of the Science material, and the announcement of consultation on the number of subjects on offer. I think it’s meant that people have conflated the two.
But – none of this is set in stone; it’s all draft material. Feel strongly about it? Then follow the appropriate links above, and be heard. And – read all the relevant materials before you comment.
One of the things I’ve heard quite often about the Science ASs is that the actual subject material is “hidden”. To some degree this might be due to people reading the headlines, and the ASs, and not also going through the supporting material: the learning matrix (which clearly identifies content) or the Teaching, Learning & Assessment Guide (TLAG for short). But from my perspective, the content material for biology, physics, chemistry, and earth & space science remains the same, and provides an essential context for delivering concepts and competencies relating to the Nature of Science strand in the National Curriculum document (NZC). Hopefully the next round of consultation documents will see the inclusion of some examples of teaching and assessment plans that show what this would look like in practice.
Thus, I think there does need to be an element of trust that teachers will continue to deliver content, & in fact – speaking personally – I would hope there will be a clear statement at some point about the need to cover content. However, I also think it’s important to remember that at the moment there are 31 standards available to schools delivering a year 11 Science program (which is almost all of them) and thus there is no guarantee of consistency now about what content students may or may not have covered.
I’ve heard a lot of concern about the need for professional learning development (PLD) opportunities for teachers. It’s a concern that I know is shared by all of us on the SEG, and it’s one that we’ve communicated to the Ministry. This is a shift in direction; it will entail a significant amount of work by classroom teachers; and there absolutely needs to be a substantial amount of PLD available well before implementation of any confirmed changes to the NCEA. (Not least, for science teachers, because the year 11 changes will probably flow down – to year 9 & 10 classrooms – and may have some impact ‘upwards’ as well.
But – & it’s a very big ‘but’ – I think that it would be easy to lose sight of the fact that the proposed standards are very much aligned to the NZC in placing  the nature of science front & centre (its delivery to date, if present, has been largely implicit).  As I wrote in my previous post,

Back in 2007 New Zealand implemented a new national curriculum. One of the features of the science component of that document is the overarching importance of students gaining an understanding of the nature of science (the “unifying strand” of the curriculum). In that context, it expects that:

students learn what science is and how scientists work. They develop the skills, attitudes, and values to build a foundation for understanding the world. They come to appreciate that while scientific knowledge is durable, it is also constantly re-evaluated in the light of new evidence. They learn how scientists carry out investigations, and they come to see science as a socially valuable knowledge system. They learn how science ideas are communicated and to make links between scientific knowledge and everyday decisions and actions.

And the document specifically adds that these outcomes are pursued through the following major contexts (the various science ‘subjects’) in which scientific knowledge has developed and continues to develop.

 

Given that currently about 60% of students in year 11 science don’t go on to further study in any of the sciences, I’d argue that while a scientifically-literate society does need some knowledge of science, it also requires a solid understanding of the nature of science itself.

 

 

¹ In my personal opinion, the inclusion of additional specific subject standards at year 11 would pretty much destroy the kaupapa of the SEG’s work, in that we would not see students gaining that key, core understanding of NoS. The nature of the 4 ASs currently out there for feedback was not determined randomly, but as the result of a fair bit of thought and discussion by the SEG members.

December 6, 2018

the sad state of science learning in primary school

This post was first published on my ‘other’ blog. It’s not intended to diss primary school teachers – quite the reverse! They need all the help & support they can get to help them deliver the science curriculum.

In 2011, Sir Peter Gluckman released his report, Looking ahead: science education for the 21st centuryIn it, he noted the need to improve science teaching in primary schools, commenting that

there should be an attempt to improve the confidence [my emphasis] of all teachers within primary schools to assist in science and that all primary schools should be encouraged to develop a science champion.

And in 2012, David Vannier pointed out that

there is growing evidence that too many children are not doing well in science and do not have access to effective instruction, especially at the primary level.

and that

[at] the same time that the New Zealand government is seeking to spur innovation in science as a means to improve the economy, less and less emphasis is being placed on science instruction in primary schools.

Fast forward to Monday this week, when Radio NZ reported on the findings of The National Monitoring Study of Student Assessment (NSSA): that 20 percent of Year 8 children last year reached the expected level of achievement in science – the lowest figure of any learning area in the curriculum. While most children liked learning about science at school – 82% of those in year 4 and 65% in year 8 – those figures haven’t changed significantly since the previous survey in 2010, and the decline between years 4 and 8 should be a concern. Overall, these results don’t augur well for science literacy and engagement with science amongst our young people.

You may be tempted to lay this result at the feet of National Standards. Don’t. Looking Ahead was published in 2011. National Standards were first implemented in 2010, just a year earlier. The issues identified by Sir Peter Gluckman have had a longer gestation than that.

I wrote about Sir Peter’s report at the time, highlighting his statement that

science education is not just for those who see their careers involving science but is an essential component of core knowledge that every member of our society requires.

Thus, science education needs to deliver on what Sir Peter characterised as ‘citizen-focused objectives’, where all children need to have:

  • a practical knowledge at some level of how things work;
  • some knowledge of how the scientific process operates and some level of scientific literacy
  • enough knowledge of scientific thinking as part of their development of general intellectual skills so that they are able to distinguish reliable information from less reliable information.

But can it deliver? His report also notes that

[a] well prepared primary school teacher will integrate excitement about the natural world and scientific forms of thinking into literacy and numeracy teaching, and into general educational processes. The challenge is how to provide primary teachers with the skills to do so. [My emphasis]

I believe that meeting this challenge will require changes to at least two things: teacher-training curricula, and professional development (PD) and support.

Just 25% of primary school teachers hold another qualification, in addition to their teaching degree, and it’s probably fair to say that BSc graduates are in a minority. Intending primary school teachers usually study for a 3-year Bachelor of Teaching degree, and take a range of papers in their first year – including one on science teaching. This one paper, plus learning opportunities while on practicum in schools, may well be their sole exposure to science (Campbell, 2018).

Which is where the PD and support come in. Ally Bull (2016) found that science was “marginalised” in the primary curriculum; and that teachers – lacking confidence to teach the subject – often had little in-school support and only limited access to opportunities for PD. The majority of those providing the PD (51%) aimed to enhance teachers’ confidence to teach science, and just 5% felt that developing their knowledge of science was important. Bull also cited other research that found that “primary teachers’ lower confidence in low confidence in teaching science reflected their lesser degree of content knowledge.”

There are ways to address this. Anne Hume & Cathy Buntting (2014) developed resources and shared these with primary teacher trainees, encouraging them to think about what science ideas they could teach (plus the why, when & how) while using those resources. Their results? Really encouraging:

Even student teachers who had previously felt very apprehensive about teaching science reported feeling far more confident about the prospect after completing the CoRe assignment.

Programs like theirs, changes in teacher education, and the commitment to provide ongoing mentoring and support, should raise teachers’ confidence in teaching science and see them reach their full potential as ‘science champions’. Our teachers and our children deserve no less.

 

 

September 20, 2013

charter schools can teach creationism after all

I first wrote about charter schools just over a year ago. At the time I was commenting on statements that such schools would be able to employ as teachers people who lacked teaching qualifications, wondering how that could sit with the Minister’s statements around achieving quality teaching practice. But I also noted concerns that charter (oops, ‘partnership’) schools could set their own curricula, as this would have the potential to expand the number of schools teaching creationism in their ‘science’ classes.

Well, now the list of the first 5 charter schools has been published: two of those schools is described (in the linked article) as intending to “emphasise Christian values in its teaching.” By itself that =/= creationism in the classroom – but yesterday Radio New Zealand’s Checkpoint program (17 September 2013) reported that the school’s offerings will probably include just that.

In addition the prinicipal has reportedly said that the school will teach “Christian theory on the origin of the planet.”

And today we’re told (via RNZ)

The Education Minister has conceded there’s nothing to prevent two of New Zealand’s first charter schools teaching creationism alongside the national curriculum.

Two of the five publicly-funded private schools, Rise Up and South Auckland Middle School, have contracts that allow a Christian focus.

The minister, Hekia Parata, said on Tuesday that none of the five schools would teach creationism alongside or instead of evolutionary theory.

But on Thursday she told the House two of the schools will offer religious education alongside the curriculum.

Ms Parata did not specify how the two would be differentiated in the classroom.

South Auckland Middle School has told Radio New Zealand it plans to teach a number of theories about the origins of life, including intelligent design and evolution.

Point 1 (trivial, perhaps?): South Auckland Middle School needs to look into just what constitutes a theory in science. (Hint: a theory is a coherent explanation for a large body of facts. “A designer diddit” does not remotely approach that.)

Point 2 (not trivial at all): Why do people responsible for leading education in this country think it acceptable for students to learn nonscience in ‘science’ classes? After all, the Prime Minister has commented on “the importance of science to this country.” Evolution underpins all of modern biology so how, exactly, does actively misinforming students about this core concept prepare those who want to work in biology later? Nor does teaching pseudoscience sit well with the increased emphasis on ‘nature of science’ in the NZ Curriculum.

This is really, really disappointing. We already have ‘special character’ schools which teach creationism in their classrooms (see herehere and here, for example). It’s irking in the extreme that state funding will be used to support the same in the new charter schools.

Blog at WordPress.com.