Talking Teaching

December 21, 2011

the status & quality of year 11 & 12 science in australian schools

My reading assignment today was a report just out from the Australian Academy of Science(the AAS) on science in Australian secondary schools (Goodrum, Druhan & Abbs, 2011). Not what you might expect on a reading list in the week before Christmas, but I was up to speak (briefly) about it on Radio NZ & needed to have an idea what the report contained.

It’s a really thorough study of the state of senior school science across the Tasman, based on an extensive literature review, a survey of students (both those taking science, & those who aren’t) in NSW, South Australia & the Australian Capital Territory, a phone survey of senior science teachers in the same states, and a series of focus groups involving not only teachers and students but also scientists & members of the wider community. This allowed Goodrum & his colleagues to describe the ideal state of senior school science education in Australia (my marginal note at this point says ‘Wonderful! but does it/can it happen?) in terms of students & the curriculum, teaching as a profession, the resourcing of science teaching & learning, and the value of science education. They describe the last item thusly:

Science and science education are valued by the community, have high priority in the school curriculum and science teaching is perceived as exciting and valuable, contributing significantly to the development of persons and to the economic and social well-being of the nation.

And then… they identified the actual state of affairs, “by focusing on different dimensions of the school experience: the students, the curriculum, the pedagogy, the teachers and finally the resources.”

I must say that I think we are well ahead of the Australian state of play in terms of the curriculum document as discussed in the AAS report: Yes, the NZ curriculum is probably still too content-heavy, but at least the clear understanding and expectation is that senior school science should do much more than simply prepare a relatively small cohort of students for university. (This is something that I believe the universities need to be much more aware of, as otherwise we will continue to have a disjunction between lecturer expectations and the actual prior learning experiences of our new first-year students.) Also, the NZ Science curriculum explicitly requires that students be given the opportunity to learn about the nature of science; it’s not all about content knowledge. However, the AAS survey found that both students and teachers in the Australian school system believed that

Year 11 and 12 science is constructed to prepare students for university study. This university preparation perspective has resulted in an overcrowded content-laden curriculum. WIth the amount of content to be covered there is little room for flexibility from either the teacher or student.

Goodrum & his colleagues also found that most senior science teaching** in the schools they surveyed is done using the transmission model (teacher talks or writes on the board – or uses powerpoint – & students simply write it all down); that teacher demonstrations are common; and that practical sessions tend to be of the ‘cook-book’ variety where the outcomes are already known and the students are simply following a pre-determined method. Where there isopportunity for more inquiry-based learning in labs, teachers reported that these really sucked through the time & that this in turn led schools using open-ended student projects to advise students not to take all three sciences as the demands on their time would be too great.

So what did they find when they looked at levels of participation in senior science: the proportion of students in each year’s cohort who were enrolled in science subjects in their final 2 years of secondary school? The news was not good, and it’s news that’s obviously generating a lot of concern: looking at the proportion of students enrolled in each discipline in each year, they found that

[s]ince 1991, the percentage of students enrolled in Biology, Chemistry and Physics has been gradually falling. For Biology the fall has been from 35.9% in 1991 to 24.7% 2007, for Chemistry 23.3% in 1991 to 18.0% in 2007, and for Physics 20.9% in 1991 to 14.6% in 2007. While the fall has slowed there is no indication that it has stopped.

(The proportion taking Psychology, on the other hand, has almost doubled – from 4.9% in 1991 to 9.2% in 2006. Geology – this in a country where mineral resources are so significant to the economy – has remained at a fairly constant 1% throughout the study period.)

And looking at total science enrolments in Year 12:

there has been a dramatic fall in the percentage of students studying science in Year 12 from a height of 94.1% in 1992 to a low of 51.4% in 2010

with a particularly large drop-off in the period 2001-2002. The researchers weren’t able to identify any reason for this in terms of policy changes. Part of the decline may be linked to how students perceive science in schools – something that probably needs to be addressed in junior schools, because

Some non-science students report that if science was more ‘interesting and relevant to their lives’ then they would consider enrolling in it… Many, however, think so poorly of their experience and achievements in junior secondary science** that they won’t consider senior science under any circumstances.

This is a real pity, as the community members surveyed clearly felt that all students need to study science throughout their schooling – it shouldn’t be just for those who need it for their careers. They felt that science in schools

should be relevant… and demonstrate how science understanding and process impacts daily life.

Which is great – but I did wonder if those sentiments are shared by the wider school community as a whole (parents, teachers, students, the works). Schools do seem to be under pressure to broaden their curriculum, which places time constraints on teachers in the various subjects, & at least some of that pressure comes from the communities in which the schools are situated.

So how do the Australian data stack up compared to senior science education in New Zealand? I gathered from my radio host that the PM’s Chief Science Advisor, Sir Peter Gluckman, will be soon releasing a report on just this issue. Watch this space.

** The researchers make the point that this is different from the teaching methods used in junior (our years 9-11) science classes, and suggest that “[p]erhaps this more enlightened approach in the junior years should influence how science is taught in Years 11 & 12.” (Some students obviously gained a different impression…)

D.Goodrum, A.Druhan & J.Abbs (2011) The Status and Quality of Year 11 and 12 Science in Australian Schools. A report prepared for the Office of the Chief Scientist.

December 20, 2011

using pseudoscience to teach science

The following post is an article that I originally wrote for the New Zealand Science Teacher journal (the official journal of the New Zealand Association of Science Educators), and is reproduced here (& also on my ‘other’ blog) by kind permission of the editor.

We live in a time when science features large in our lives, probably more so than ever before. It is  important that people have at least some understanding of how science works, not least so that they can make informed decisions when aspects of science impinge on them. Yet pseudoscience seems to be on the increase. While some argue that we simply ignore it, I suggest we use pseudoscience to help teach the nature of science (and I recommend Jane Young’s excellent book, The uncertainty of it all: understanding the nature of science,(2010) as a resource).

The New Zealand Curriculum (MoE, 2007) makes it clear that there’s more to studying science than simply accumulating facts: Science is a way of investigating, understanding, and explaining our natural, physical world and the wider Universe. It involves generating and testing ideas, gathering evidence – including by making observations, carrying out investigations and modeling, and communicating and debating with others – in order to develop scientific knowledge, understanding and explanations (p28). In other words, studying science also involves learning about the nature of science: that it is a process as much as, or more than, a set of facts. Pseudoscience offers a lens through which to approach this.

1. Check the information
Students should be encouraged to think about the validity and reliability of particular statements. They should learn about the process of peer review. They should ask: has a particular claim been peer reviewed; who reviewed it; where was it published? There is a big difference between information that’s been tested and reviewed, and information (or misinformation) that simply represents a particular point of view and is promoted via the popular press (and Internet).

‘Cold fusion’ is a good example. Cold fusion was a claim that nuclear fusion could be achieved in the laboratory at room temperatures. The claim was trumpeted to the world via a press release, but was subsequently debunked because other researchers tried, and failed, to duplicate its findings.

Thus checking the source of the information is vital. There is a hierarchy of journals, with publications such as Science considered prestigious, and publications such as Medical Hypotheses considered less so. The key distinction between these journals is the peer review process. For example, papers submitted to Science are subject to stringent peer review processes (and many don’t make the grade), while Medical Hypotheses seems to accept submissions uncritically, with minimal review.

By considering the source of information students can begin to develop the sort of critical thinking skills that they need to make sense of the cornucopia of information on the Internet. When viewing a particular Internet site they should ask (and answer!) questions about the source of the information: has it been subject to peer review (you could argue that the Internet is an excellent ‘venue’ for peer review, but all too often it’s simply self-referential), does it fit into our existing scientific knowledge, and do we need to know anything else about the data or its source?

2. Analyse the information
The following example is excellent for a discussion around both evolution and experimental design, in addition to the nature of science. There is an online article entitled Darwin at the drugstore: testing the biological fitness of antibiotic-resistant bacteria (Gillen & Anderson, 2008) where the researchers tested the concept that a mutation conferring antibiotic resistance rendered the bacteria less ‘fit’. Note: There is an energy cost to bacteria in producing any protein, but whether this renders them less fit – in the Darwinian sense – is entirely dependent on context.

The researchers used two populations of the bacterium Serratia marcescens: an ampicillin-resistant lab-grown strain, which produces white colonies, and a pink, non-resistant (‘wild-type’) population obtained from pond water. ‘Fitness’ was defined as ‘growth rate and colony “robustness” in minimal media.’ After 12 hours’ incubation the two populations showed no difference in growth on normal lab media (though there were differences between 4 and 6 hours) but the wild-type strain did better on minimal media. It is difficult to know whether the difference was of any statistical significance as the paper’s graphs lack error bars and there are no tables showing the results of statistical comparisons. Nonetheless, the authors describe the differences in growth as ‘significant’.

The authors concluded that antibiotic resistance did not enhance the fitness of Serratia marcescens: wild-type [S.marcescens] has a significant fitness advantage over the mutant strains due to its growth rate and colony size. Therefore, it can be argued that ampicillin resistance mutations reduce the growth rate and therefore the general biological fitness of S.marcescens. This study concurs with Anderson (2005) that while mutations providing antibiotic resistance may be beneficial in certain, specific, environments, they often come at the expense of pre-existing function, and thus do not provide a mechanism for macroevolution (Gillen & Anderson, 2008).

Let us now apply some critical thinking to this paper. Your students will be familiar with the concept of a fair test, so they will probably recognise fairly quickly that such a test was not performed in this case because the researchers were not comparing ‘apples with apples’. When one strain of the test organism is lab-bred and not only antibiotic-resistant but forms different coloured colonies from the pond-dwelling wild-type, there are a lot of different variables involved, not just the one whose effects are supposedly being examined.

In addition, and perhaps more tellingly, the experiment did not test the fi tness of the antibiotic-resistance gene in the environment where it might convey an advantage. The two Serratia marcescens strains were not grown in media containing ampicillin! Evolutionary biology predicts that the resistant strain would be at a disadvantage in minimal media. This is due to it using energy to express a gene that provides no benefit in that environment, making it short of energy for other cellular processes. And, as I commented earlier, the data do not show any significant differences between the two bacterial strains.

Also, the authors work at Liberty University, a private faith-based institution with strong creationist leanings, and the article is an online publication in the ‘Answers in Depth’ section of the website of Answers in Genesis (a young-Earth creationist organisation). This is not a mainstream peer-reviewed science journal. This does suggest that a priori assumptions may have coloured the experimental design.

3. Verify the information
Your students should learn how to recognise ‘bogus’ science. To begin with, students should scrutinise information presented via the popular media (including websites) and ask: why is this happening? Another warning sign is the presence of conspiracy theories.

One conspiracy theory worth discussing relates to the validity of vaccination programmes: “Is vaccination really for the good of our health, or the result of a conspiracy between government and ‘big pharma’ to make us all sick so that pharmaceutical companies can make more money selling products to help us get better?”

Dr A. Kalokerinos is often quoted on anti-vaccination websites as saying: My final conclusion after forty years or more in this business is that the unofficial policy of the World Health Organisation and the unofficial policy of ‘Save the Children’s Fund and almost all those organisations is one of murder and genocide. They want to make it appear as if they are saving these kids, but in actual fact they don’t.

This quote is a good example of how conspiracy theorists often use an argument from an ‘authority’. Yet it is easy to pull together a list of names with PhD or MD after them to support an argument. Try giving your students a list of names of ‘experts’ and see if they can work out their field of expertise.

Recently, New Zealand schools received a mailout from a group called ‘Scientists Anonymous’ offering an article purporting to support ‘intelligent design’ rather than an evolutionary explanation for a feature of neuroanatomy. The article was authored by Dr Jerry Bergman.

A literature search indicates that Dr Bergman has made no recent contributions to the scientific literature in this field, but he has published a number of articles with a creationist slant. So Dr Bergman cannot really be regarded as an expert authority in this particular area. Similarly, it is well worth reviewing the credentials of many anti-vaccination ‘experts’ – the fact that someone has a PhD by itself is irrelevant; the discipline in which that degree was gained, is important. Observant students may also wonder why the originators of the mail out feel it necessary to remain anonymous.

Students need to know the difference between anecdote and data. Humans are pattern-seeking animals and we dohave a tendency to see non-existent correlations where in fact we are looking at coincidences. For example, a child may develop a fever a day after receiving a vaccination. But without knowing how many non-vaccinated children also developed a fever on that particular day, it’s not actually possible to say that there’s a causal link between the two.

Another important message to get across to students is that there are not always two equal sides to every argument, not withstanding the catchcry of “teach the controversy!” This is an area where the media, with their tendency to allot equal time to each side for the sake of ‘fairness’, are not helping. Balance is all very well, but not without due cause.

For example, apply scientific thinking to claims such as the health benefi ts of homeopathy. Homeopathy makes quite specific claims concerning health and well-being. How would you test those claims of efficacy? What are the mechanisms by which homeopathy – or indeed any other alternative health product – is supposed to have its effects? Claims that homeopathy works through mechanisms as yet unknown to science don’t address this question, but in addition, they presuppose that it does actually work.

Students will have some knowledge of the properties of matter and the effects of dilution, and senior classes may be aware of Avogadro’s number. They could apply this to the claim that homeopathic remedies become more effective at higher and higher dilutions, something that, if correct, would overturn our understanding of basic chemistry and physics. The 10:23 Campaign – in which people take ‘overdoses’ of homeopathic remedies – is a humorous way of highlighting the improbability of such claims.

Finally…
If students can learn to apply these tools to questions of science and pseudoscience, they will become better equipped to find their way through the maze of conflicting information that the modern world presents, regardless of whether they go on to further study in the sciences.

A.Campbell (2011) Using pseudoscience to teach science. New Zealand Science Teacher 128: 38-39

December 4, 2011

prior learning & university success in biology

Like the previous post (in fact, like most of my posts!) this is something I originally wrote for the Bioblog. Much of what I write there is on biological issues of one sort or another, but it’s nice to be able to share the teaching-focused ones here :-)

One of the sessions at FYBEC – on the changes in NCEA Achievement Standards in order to align them with the 2007 Curriculum document – generated a lot of discussion. It was great to have this session, as a heads-up to the changes in prior learning that we’ll see in students coming in to uni-level biology from 2013 (genetics will be moved to year 12, for example). Not least because I think many tertiary educators are still not really clear on how NCEA (the National Certificate in Educational Achievement, for my non-NZ readers) & the curriculum work, in the sense that there is plenty of room for flexibility in which (& how many) standards schools may decide to offer. From the uni perspective, this means that there will be a lot more diversity in prior learning among that 2013 cohort. (Even more than exists now, that is.)

I think it’s fair to say that at FYBEC responses to this information were quite wide-ranging. At one end there were those who found this quite worrying: surely schools should be given guidelines on just what they should be teaching those year 13 students, so that they all came to uni with the same general background in biology? This is certainly something that’s been discussed before, but my own opinion is that if we went down that route, it would suggest that we’re out of touch with what’s going on in the secondary schools. It also ignores the fact that a lot of year 13 students are not actually going on to university study, & schools have a responsibility to prepare all their students for their future lives & careers, not just the uni-bound cohort. Plus, the new curriculum actually encourages schools to offer a mix of standards that suit the needs of their own students & community (eg it’s possible to combine standards in chemistry & biology so that students can focus on biochemistry).

The thing is, while the current changes in standards & curriculum may increase the diversity in student backgrounds, that diversity is actually nothing new. A reasonably large number of students in my own first-year bio classes will have last studied biology in year 12, for example, and there’s usually a smattering of people who’ve not studied the subject beyond year 11 (if that). But research has shown that this doesn’t really matter: by the end of the semester there’s no real difference in levels of achievement between those different groups -provided we adapt our teaching accordingly (eg Buntting, Coll & Campbell, 2005).

So when my friend Pip gave me a paper entitled Prior learning in biology at high school does not predict performance in the first year at university, by Elisa Bone & Robert Reid (2011), I was eager to read it.

There are many factors that can affect a student’s transition from secondary school to university life, and Bone & Reid expected that one predictor of academic success in biology classes would be prior study in the subject. They set out to look for any correlation between students’ results in a paper on cellular & molecular bioloty wtih their school results, predicting that students with prior learning in biology would have higher results than those without it, but that chemistry might also be important (for students in this particular paper, anyway). The research was carried out at the University of Adelaide which (as is the case in New Zealand) has no requirement for previous study in biology or chemistry for students intending to enrol in the paper.

Now, introductory classes typically cover a lot of material (see my previous post on the issue of content), fairly quickly, & so it’s reasonable to expect that some prior learning in that area would be beneficial. Other factors that might affect success include the need to get used to large class sizes & the expectation from teaching staff that students are, or are becoming, independent learners; the need to adapt to high workloads & to become enculturated into the sometimes rather impersonal life of an academic institution; and  things outside the institution’s control, such as family responsibilities or work (Bone & Reid, 2011; Zepke et al., 2005).

In the period 2004-2007 the paper’s organisers had streamed students, with everyone having the same lectures & labs but students who hadn’t completed the final year of bio at school attended a 2-hour long tutorial each week (as opposed to the normal 1-hour class). The idea was that the students would have extra time to ask questions & work on problems but – I suspect rather to the surprise of the organisers – overall this intervention had no significant effect on either student success or retention. So, for students in the 2007-2009 cohorts, Bone & Reid looked at student performance for 3 groups: those who’d taken biology but not chemistry, those who’d completed chem but not bio, & those who’d done both subjects right through their final year of school.

Much to the researchers’ surprise, they found no difference in outcomes for students who had, or hadn’t, studied biology in their final year of school – unless they’d also studied chemistry:

[There] were no differences between final… grades [in the cellular & molecular paper] for students who completed biology in Year 12** and those that had not, whereas students who completed chemistry in Year 12 performed better… than those who had not.

(** In Australia year 12 is the equivalent of year 13 in New Zealand.)

Deeper analysis showed that around a third of students who studied biology weren’t taking any other science, while those who took chemistry were highly likely to take another science (most commonly physics). Bone & Reid wondered if the chemists were likely to have a higher level of scientific literacy & that this was more likely to influence success than prior experience in biology. Now that would be a very interesting question to delve into! But presence or lack of prior learning in biology was not a predictor of success in the subject at university.

Because prior learning in the sciences seemed to be most important, the researchers felt that a comparison of secondary and tertiary curricula in biology would be useful – and indeed it would. For a start, students don’t come to us as blank slates, & without some idea of their prior learning experiences, how on earth can we help them develop a schema that lets them build new knowledge onto that previous base?

They also noted that, while lecturers might often expect students to read the primary literature, “the language of science as presented at secondary school level may be very different to that used in the primary scientific literature”. This is almost certainly true – and to be expected considering that schools are necessarily catering to a much wider range of needs. But it does imply that first-year teachers might need to develop ways to help students learn the language of academic discourse – and maybe also teach them how to read a scientific paper.

What’s more,

[much] secondary school science teaching also aims to focus on broad conceptual understanding and the application of concepts to real-life experiences, whereas in the tertiary environment educators may place less emphasis on these applications and more on the learning of fundamental, potentially abstract principles… [This] change in teaching styles could lead to a decrease in student engagement.

As Deslauriers, Schelew & Wieman showed for physics students, there’s no “could” about it. And – while large class sizes are pretty much the norm at university, this doesn’t mean that university lecturers can’t use a range of techniques to engage, encourage, and support students in their learning – and to maximise their students’ chances of success regardless of background in the subject.

Bone & Reid conclude that

educators and administrators cannot expect students to be suitably prepared for first-year biology simply because they have completed biology at the senior high school-level… In addition, first-year educators face continuing issues as a result of the mismatch and need to tailor their teaching activities to suit students with widely varying levels of background knowledge.

To which I respond: hear hear!

E.Bone & R.Reid (2011) Prior learning in biology at high school does not predict performance in the first year at university. Higher Education Research & Development, 30(6): 709-724

C.Buntting, R.Coll & A.Campbell (2005) Using concept mapping to enhance conceptual understanding of diverse students in an introductory-level university biology course. Paper presented at the 36th Annual Conference of the Australasian Science Education Research Association

N.Zepke, L.Leach, T.Prebble, A.Campbell, D.Coltman, B.Dewart, M.Gibson, J.Henderson, J.Leadbeater, S.Purnall, L.Rowan, N.Solomon & S.Wilson (2005) Improving tertiary student outcomes in the first year of study. TLRI report, NZCER Distribution Services.

December 1, 2011

challenges in teaching biology

I spent Monday & Tuesday of this week down in Wellington, attending the 2nd First-Year Biology Educators’ Colloquium. (Yes, that’s a mouthful! We usually just say FYBEC to those in the know.) It was really refreshing to spend time focusing on how we teach first-year biology at university, and on research into ways to enhance that teaching.

The first keynote was by Pauline Ross, who’s at the School of Natural Sciences, University of Western Sydney. Pauline’s won a large number of teaching excellence awards & it was a real privilege – & a pleasure! – to learn from her. She started her talk by identifying a number of things (aka the ‘7 deadly ways to see’) that can offer significant challenges to students beginning their uni-level studies in biology. But before I get onto those, I’m going to quote Pauline’s own words on receiving an Australian national teaching excellence award:

Although biology is supposedly the “easiest” of the science disciplines, research on student learning has shown that even high calibre, high achieving biology students at elite institutions taught by universally admired academics, fail to build a scientifically conceptual and contextual foundation in biology, perhaps because learning, teaching and assessment strategies in the discipline of biology have become ritualised. [However, a Kuhnian] paradigm shift allows me to communicate a deep conceptual and contextual understanding of biology to students. At the cornerstone of this paradigm shift is creativity; requiring students and staff to relearn their capacity for creativity and self-belief; inquiring, uncovering and overcoming barriers in their conceptual understanding, so that they think and practice as biologists.

Which pretty much sets the stage for the idea of the 7 deadly ideas (actually there were only 6, but the ‘7 deadly sins’ thing has a certain resonance!).

(1) First up was content, something that we have an awful lot of – and of course this is as much an issue for secondary school teachers as it is for those of us at university. The textbook I use with my classes, Campbell Biology, seems to get thicker with each new edition as the frontiers of our knowledge continue to expand. Ross asks, can we decrease our coverage of content? How do we decide just which are the key content areas for students to learn about? She suggests that we should pay more attention to the research on threshold concepts, something that my colleague Michael Edmonds has previously written about over on Sciblogs.

Mastery of a threshold concept is sort of an ‘aha!’ moment, says Ross, because it opens your eyes to new ways of exploring a topic. (As Michael says, they’re sometimes called ‘troublesome knowledge’, because they can clash with existing worldviews and (mis)conceptions. Not that this is necessarily a bad thing, as it can – should? – lead to a re-examination of those views & conceptions in the light of this new knowledge.) Placing more weight on threshold concepts may mean there’s a reduction of content overall, but it should also lead to a much deeper conceptual and contextual understanding. And that is definitely a Good Thing, as when students don’t understand they are stuck, unable to really move on in their learning. While they may be quite active in trying to gain understanding, they can also be quite confused and anxious – & they can stay that way, says Ross, for months.

So, considering threshold concepts rather than simply focusing on content knowledge can provide us with a new tool for revisiting and reviewing our teaching curricula.

(2) Next in the list was process. This is something I believe all tertiary science educators should ask themselves: do our students really graduate with all the science process skills that we fondly imagine they do? After all, our graduate profile probably says that they can do x, y, & z – but what opportunities do we give them to actually practise thinking like a scientist, for example? (Hint: they won’t learn it by osmosis.) We really do need to teach science as a fluid process, not as a fixed body of knowledge (all that content again!) – and to give students plenty of opportunity to experience that fluid process that is the essential nature of science. Similarly, the writing and literacy skills that we’d like them to have – are we providing sufficient opportunities to practice and learn those skills? Here Ross gave the example of meiosis & mitosis: we tend to teach about these forms of cell division as a series of steps (interphase, prophase etc) but we don’t teach their significance in context. She argues that if we want students to do more in (say) exams than simply parrot the names and chromosome states of those steps, then we need to give relevant, everyday examples to which they can anchor their knowledge. Her example was a question about a grazed knee that needed some pretty deep knowledge and writing about cell division to answer – & which couldn’t be answered but just listing those steps.

Of course, that would require some reasonably large changes in assessment (see # 5)…

This is getting a bit long :-)

(3) Inquiry ie inquiry-based learning, something that’s intimately linked to process. This is gaining in emphasis in schools & it’s worried me for some time that students who’ve gained by learning using this approach in school must find ‘traditional’ university teaching rather a rude shock. It’s why Brydget (our wonderful first-year tutor) & I are always looking for ways to include more possibilties for genuine inquiry-based learning in our lab classes, for example, & it’s possible to do the same in lectures using opportunities for group problem-solving sessions. As Carl Wieman & his team (among others) have shown, this sort of approach enhances engagement & improves learning outcomes, while also giving the opportunity to practice thinking like a scientist. What’s not to like?

(4) Language ie jargon. There’s an awful lot of it. Yes, of course there are technical terms that students must master, but we need to ensure that mastery is properly scaffolded. I had an ‘aha!’ moment at this point, because Ross commented even saying a word correctly can help with learning it, but we seldom give them the chance to practice. (Phil Bishop picked up on this in his own presentation, noting that very few of his students could say ‘coelom’ correctly.)

(5) Assessment. Ah, I could write a whole post, in fact several of them, about assessment. Probably will, at some point. (At which point the audience may step away from the computer & walk, not run, from the room, lol.) Suffice it for now to say that how we assess has a very significant impact on how, and what, students learn – and that we may use too much of the type of assessment that encourages shallow, not deep, thinking and learning and which works against deep conceptual and contextual understanding.

(6) And innovation – how much do we really value and encourage it, Ross asks. Not innovation for innovation’s sake, but innovation for good pedagogical, research-based reasons, that changes how we teach (including assessment) in ways that should have a positive impact on how students learn. Things like the ‘flip teaching’ described by Deslauriers, Schelew & Wieman (2011), for example, and which Kevin Gould has trialled with his first-year botany students at Victoria University: they’re given a handout of information on all sorts of things (shade/sun leaves, controlling gas exchange/water loss, etc), tasked with designing a plant for a particular environment – & then asked to present their design to the rest of the class.

I am so going to steal that one, Kevin!

Blog at WordPress.com.