Talking Teaching

February 25, 2018

what are the challenges for first-year core science courses?

This is another post based on a talk at FYSEC2017, & which I’ve also published on my bioblog.

Prof Karen Burke da Silva was the keynote speaker at Day 1 of the 2017 First-Year Science Educators’ Colloquium, held in Wellington. Her topic:Transforming large first year science classes: A comprehensive approach to student engagement. Currently at Flinders University, she’s been instrumental in setting up an ‘integrated teaching environment’ that’s seen a drop in withdrawals, and a marked increase in engagement, among their first-year STEM students.

If you’ve read my earlier FYSEC-focused post, you’ll know that student engagement was a hot topic at last year’s colloquium. Which isn’t surprising; as Karen noted, both NZ and Australian universities have trouble with attention, engagement, retention, and performance of their first-years, who face some significant challenges in transitioning from their smaller high-school classes to the large lecture rooms of universities. She commented that

how best to build a first-year program in sciences that allows for different student backgrounds, abilities and interests is a task that all first-year coordinators face.

Because students are so diverse, if we’re going to accommodate their various needs and backgrounds, we really need to know about those first. In Australia, the SSEE Project gathered data on both student and staff expectations and experiences (& whether the two converged) across all disciplines at Flinders, the University of Adelaide, and the University of South Australia. The decision to set this research project up was based on some reasonably concerning information:

  • Statistics show that of all students entering Australian universities one-third fail to graduate and of those students who withdraw from their programs over half withdraw in their first year.
  • Students preparing for tertiary study may do so individually or via school, government and university initiatives. Many students, however, still experience an early ‘reality shock’ during their first semester rather than a smooth transition to university.
  • The mismatch between students’ expectations and experiences has ramifications for their learning, satisfaction, retention and ultimately, their wellbeing.

Among the findings that Karen presented to us:

the majority of students were neutral about, or agreed with, the statement that secondary school education was an adequate preparation for university study;

students from schools offering the International Baccalaureate program outperformed those from all other schools on entering university (with students from state schools doing least well), & the difference was still reflected in GPAs at the end of that first year:  However, the difference between state and private schools disappeared over that time;

friends, university websites, and universities’ recruiting efforts had more effect on shaping students’ views about university study than teachers, guidance counsellors, family, new and traditional media outlets, and provided a more accurate reflection of what uni life is really like.

students’ expectations around what constituted a reasonable time interval for returning marked work to them were not matched by the reality: the majority expected it back in 2-3 weeks, but in reality most waited 3-4 weeks;

the great majority felt that receiving feedback on drafts would be very important to their learning – but most disagreed with, or were neutral about, the statement that they actually received such feedback. (While students may not be aware that there’s more to feedback than written comments on an assignment, providing feedback in a timely manner is something that most universities need to work on.)

When Karen arrived at Flinders, back in 2007, the STEM disciplines had a high fail rate of around 23%; this was particularly noticeable among mature students & those who hadn’t taken the final year of high school. The changes she & her team made to teaching delivery were intended to address this, but they would have the effect of enhancing the learning experience for every student. I found her ideas around this really exciting (although I suspect that those wedded to a more ‘traditional’ approach to delivery would be shaking their heads).

This is what the new program looked like: first up, the first semester of the year became ‘transitional’, ensuring that everyone was in the same place before entering semester 2, which was ‘extension’, taking students’ knowledge & understanding further. Along that were ‘pre-lecture’ classesA for students identified as lacking the normally-expected background in the subject, which resulted in the students having greater confidence in their ability to cope with the subject, plus increased motivation & understanding. And I loved  the idea of regular case-based ‘lectorials’, where the students were actively engaged in addressing the issues raised in each case study. Karen’s research showed that 98% of students reported that these classes enhanced their understanding of how biology relates to the real world.

Learning was further supported by peer-assisted study sessions, run by 2nd- & 3rd-year students (who received training for the role), which were part of the formal timetable and for which students could gain up to 5% of their final grade for attendance. Karen reported that these sessions were very well attended.

And of course, STEM subjects have labs. Karen told us that Australian universities are tending to reduce the lab component of STEM papers, such that most first-year papers have less than 30 hours of practical classes – this is a real pity as in general students really enjoy labs and the practical classes (if properly focused) can enhance understanding of key concepts as well as teaching a range of practical skills. (I’m often perplexed by suggestions that we move to on-line ‘labs’, as both lab & field work have a lot of practical & interpersonal skills development associated with them, & that’s something that you don’t get by interacting with a mouse & a screen.) At Flinders, Karen told us that a science paper would have 2, two-hour, lab classes each fortnight: the first session is all about preparation & planning, & the second is the actual practical work. It seems to me that this would give students a good experience of actually ‘doing’ science – something that the students agreed with, as well as reporting that they liked becoming more responsible for their own learning.

The research projects that all science students at Flinders do in their first year of study would also have that effect, although they have to be scaffolded into these assignments – which also provide an excellent opportunity to learn many of the personal skills needed for successful teamwork. (This is another of those competencies that universities often say their students gain, but for which they often don’t really provide much in the way of carefully-designed learning opportunities.)

I was fascinated to hear that Karen also includes art, & other creative tasks, in her assessment tools – this is great as it allows students to recognise that science contains an element of creativity. She commented that having the first assignment as an art project both helps to remove the fear associated with doing a science assignment, and helps connect the teacher with their students. The question she sets is a very simple one: what does biology mean to you? These were self-graded, something that would make many science lecturers raise their eyebrows! – but apparently in moderating the results Karen’s found that 90% of the class awarded themselves the same marks that she would. Of the remaining 10%, those who graded themselves lower tended to be female, while those giving a higher mark were male. The students submitted some amazing work.

Apparently other staff weren’t always happy as they felt that students didn’t give their own assignments the same attention – but there was a happy outcome: they began to look at ways of offering the opportunity for similar assignments, with a real-world focus, in their own papers. I’d do that myself, given that these changes in delivery & assessment had a marked impact in terms of student outcomes, with fewer failures & withdrawals.

And we were reminded that students need to feel some connection with the institution & with those teaching them. (There’s quite a lot of literature available on this, including TLRI studies from NZ & other papers like this.) Having that contact offers opportunities to find out how the paper is progressing, & also to identify any problems that students might be having & to refer the students to appropriate support if necessary. I think it would also help lecturers to understand the school system that our students have come from; having that understanding is crucial in optimising the transition from secondary to tertiary learning environments.

We ended with some questions around the value of recording lectures. My institution does this; I suspect most universities in NZ do. Feedback from students indicates that the practice is helpful for international students, those wanting to review their understanding, & for those who’ve had to miss a class; Ican certainly see the peak in views just before a test! But we’re finding that many students neither attend class, nor view the recordings, & while some may muddle through like this, others don’t. So, we need to come up with a way to change students’ mindsets – and for their seemingly insatiable demand for recordings & lecture notes & previous exams. (This is something that’s definitely a carry-over from school, I think.) So, how do we deal with that demand, that sense of entitlement, that lack of engagement? I’m not sure I have the answers. Do you?

Karen thinks recorded lectures have changed face of education in a very negative way. Good for internationals, for high-achievers, for review. But the mid-range group don’t show, don’t view the recordings either. If we’re to continue with recordings then we need to change the student mindset as well.

A For those interested in the concept of prelectures, here’s the abstract from one of Karen’s papers on the subject:

First year biology students at Flinders University with no prior biology background knowledge fail at almost twice the rate as those with a background. To remedy this discrepancy we enabled students to attend a weekly series of pre-lectures aimed at providing basic biological concepts, thereby removing the need for students to complete a prerequisite course. The overall failure rate of first year biology students was lowered and the gap between students with and without the background knowledge was significantly reduced. The overall effect of the implementation of pre-lectures was a more appropriate level of teaching for the first year students, neither too difficult for students without a prior biology background and no longer too easy (or repetitive) for students with high school level biology.


February 13, 2018

engagement & experiences in undergraduate science education

This post is based on a presentation at the 2017 First-Year Science Educators’ Colloquium (FYSEC), and is also published on the Bioblog. 

At FYSEC2017Gerry Rayner led a session called “Undergraduate science education in the 21st century: issues, needs, opportunities”.

Gerry kicked off by commenting that education has a greater impact – on students, teachers, and the wider society in which education systems are embedded – when people work together across a range of disciplines. What are the issues currently facing undergraduate science in NZ & Australia, he asked, and how do we address them? This was something that generated quite a bit of subsequent discussion. On the list:

  • rising enrolments: Gerry commented that in Australia, the removal of caps on enrolment, together with international demand, meant that some predictions of student numbers saw growth of perhaps 30% over the next few years’
  • increased diversity – not only cultural and ethnic diversity, but also a wider range of prior knowledge and academic achievement on entry;
  • as fees increase, and with that, student debt, we’re already seeing a change in attitude: students see themselves as customers, paying for a product, and can expect particular outcomes;
  • lower on-campus attendance may well have an effect on student engagement (and comments from attendees showed that this is something we all face) – but, to support increased numbers, we are pushed to provide more on-line delivery;
  • this means that educators need to provide not only more on-line content and assessment, but also the sort of meaningful interactions that enhance student engagement;
  • the need – Gerry described it as a moral obligation, & I agree that the obligation is there – to provice meaningful opportunities for students to enhance their employability. That is, it’s not all about mastery of content, and students also need to gain a whole range of work-related competencies and capabilities.

Gerry then introduced some data from a report on student engagement in New Zealand universities (Radloff, 2011), which defines this thing called ‘engagement’ as

students’ involvement with activities and conditions that are likely to generate high-quality learning, [something that] is increasingly seen as important for positive learning outcomes

and comments that

measures of student engagement provide information about individuals’ intrinsic involvement with their learning, and the extent to which they are making use of available educational opportunities. Such information enhances knowledge about learning processes, can be a reliable proxy for understanding students’ learning outcomes and provides excellent diagnostic measures for learning enhancement activities.

This wide-ranging report is based on data from the AUSSEA survey of student engagement, & includes chapters on Maori and Pasifika student engagement; engagement in relation to field of study; the experiences of international students; relationships between engagement, preparation for study, and employment; students’ departure intentions; differences between part-time & full-time students; and the impact of distance education cf on-campus learning on student engagement. The survey has 6 engagement scales (academic challenge, active learning, student/staff interactions, enriching educational experiences, supportive learning environment, & work-integrated learning), & 7 outcome scales (higher-order thinking, general learning outcomes, general development outcomes, career readiness, average overall grade, departure intention, and overall satisfaction). In Radloff’s report the AUSSE data from NZ were also benchmarked against responses from Australian, South African, and US undergraduate students.

The results, said Gerry, were generally good but (& the report also makes this clear) not entirely comforting. In measures of engagement, for example, NZ students rated the quality of staff-student interactions quite poorly (an average score of 18 compared to 35 in the US); and a low proportion (across all countries) felt that they had enriching educational environments – while at the same time strongly agreeing that they had quite a supportive learning environment!

And on the ‘outcomes’ scales, only about a third of NZ first-year students felt that they had gained some level of career readiness through their uni studies. At the same time, around 30% of them had considered leaving university (yes, there were a range of reasons underlying this). Even by the end of the degree only 35% felt that they were really career-ready, & 29% had considered leaving during the year. This is not particularly positive.

Overall, for the natural & physical sciences, NZ students felt that: they didn’t get a lot of support from their university; they were less likely to answer questions or get involved in discussions; they had low levels of interaction with others in their class; felt they had lower career readiness, and lower levels of workplace-integrated learning experiences, than students from other disciplines (in fact, in this 2011 report only 9% reported involvement in some sort of placement or work experience); tended to have jobs unrelated to their future study/career hopes; and were less likely than those from other disciplines to feel that their study at uni helped prepare them for the workplace.

And again, there’s that 30% of them who either considered leaving, or planned to leave, before completing their studies (but those reporting working regularly with others in class were much less likely to be in this group). However, it’s not all doom & gloom on that front:

while nearly one-third of New Zealand’s university students have seriously considered leaving their university before completing their study, students are generally very satisfied with their experience at university. [Around 75%] rated the quality of academic advice received as ‘good’ or ‘excellent. [And more than 80%] were satisfied with their overall educational experience… The vast majority … indicated that given the chance to start over, they would attend the same university again.

Nonetheless, Gerry argued (& I agree), it appears that as a country we don’t prepare science students particularly well for the workplace – despite the fact that we’d hope that they will be contributing to the ‘knowledge economy’. So the delivery of workplace-integrated learning (WIL) becomes something that STEM faculties need to look at more closely. We also need to work on improving student perceptions of the nature of their learning experiences & outcomes. Here, Gerry suggested that experiential learning that helps develop skills as well as content knowledge, peer tutoring, innovative use of technology, case studies, group work, and role playing can all help – and can also be a part of preparing students for the WIL component of their learning, and for the workplace after university. (Of course, this means that institutions also need to provide ongoing PD for their teaching staff, to support them in using new means of delivery.)

Students benefit from WIL, as they can get a better understanding of the world beyond the universities. This is true even for projects run on campus, so long as there are industry links of some sort and the students are working on authentic problems that let them apply their content knowledge in real-world contexts. But WIL has benefits for academics as well, as the improved connections with employers can deliver research opportunities. It requires effort (& investment) to set up, but the outcomes for institutions and students would make this worthwhile.

A AUSSE: the Australasian Survey of Student Engagement

A.Radloff (ed.) (2011) Student engagement in New Zealand’s universities. pub. ACER & Ako Aotearoa. ISBN 978-0-473-19590-8

August 24, 2015

riffing on the national standards

Over on Facebook, a friend of mine shared a post (from a friend of hers) about National Standards in the NZ primary education sector. If you’re on FB I recommend reading it; it certainly gave me a bit of food for thought. In his post the author, Jamie Strange, identifies what he sees as problems with the National Standards as they currently exist.

His first, that they “[narrow] the curriculum… [placing] extra emphasis on literacy and numeracy, to the detriment of other subjects”, is something that I’ve commented on previously in the context of teaching & learning in science. Back then I said that

the introduction of National Standards appears to have focused attention elsewhere, away from the delivery of science. (I know that it should be possible to address the Standards within the context of science – or pretty much any other subject – but the risk is that this won’t be recognised by many teachers without opportunities for further training.)

It would be nice to think that things have moved on in 5 years, but Jamie’s post suggests otherwise :(

Later on he states that “National Standards limits [sic] creativity in the classroom”, in terms of restricting teachers in the methods they use to help learners gain mastery. At a time when there is increasing use of innovative teaching techniques in tertiary classrooms, it would be a pity if we really are losing that at the other end of students’ learning experiences. There’s a fascinating interview with educator Sir Ken Robinson in which he discusses why creativity is something that we really, really need to foster.

And he quotes the Labour Party’s education spokesman, Chris Hipkins:

A conformist model of education that says every student has to achieve an arbitrary set of ‘standards’ at a set time in their life, will rob us. Greatness doesn’t always follow a conventional path. Students certainly need to know how to read and write, but they also need good levels of communication, self-management, perseverance, curiosity, and social skills. What can easily be measured must not become the sole measure of success.

This is expanding on something that Hipkins said in 2014:

To thrive in the 21st century, today’s students will need to leave school with a set of skills and knowledge that are quite different to what our education system has been focused on in the past. Far from ‘standardisation’ we need to focus on fostering:

  • Creativity and innovation: New Zealand is a land of boundless potential, to realise that we will need to think outside the square, try new things, and take a few risks.

  • Adaptability and flexibility: Look at how much the world has changed in the past 15 years. We can’t even imagine how it will change over the next 15 years and yet that’s the world those starting their educational journey today will step into. Equipping them with the skills they will need to adapt to whatever life throws at them is one of the most significant gifts we can give them.

  • Collaboration and cooperation: When they step out of the education system and into the workforce, today’s students will be expected to work in teams, to problem solve, to self-motivate, and to manage their own time. Our education system needs to embrace those characteristics.

And he’s right. And his words apply to the tertiary sector as well. While ‘subject knowledge’ will remain an important attribute for uni graduates too, what one might call competencies & capabilities are just as important. These are attributes that we should foster in everyone, no matter where they’re at in their journey through our education system.

May 1, 2015

a learning experiment, and a pleasant surprise.

On Wednesday we ran our first whanau tutorial with the first-year students – a class for those students who identify as Māori. The driver for this was the observation that a disproportionate number of the Māori students in my first-year class didn’t do well in our first test, & as a result I asked Kevin, our Faculty’s senior tutor responsible for supporting Māori & Pacific Island students, to see if he could help me by setting up a whanau tutorial.

So he contacted all the Māori students in the class, sorted out a time & day that worked for them, and booked a room, & both of us organised some food and drink. Kev welcomed everyone & one of the students said a karakia (prayer) before we started. Brydget, the senior tutor who runs our first-year bio labs, came along, and so did one of the tutors from Student Learning – who took on the role of asking the ‘silly questions’, to show the students that asking questions really is a good thing & one that’s encouraged. Which gave me the chance to steal one of Brydget’s lines: that the only silly question is the one you didn’t ask :)

There was a test coming up and so the students wanted to work through questions from previous tests, plus they wanted to know how to learn (& remember) things like the characteristics of some animal phyla. I did a bit of talking but for much of the time we had the students working together in groups after a bit of an explanation from me. It was great seeing the energy levels, the engagement, and the fun in the classroom. Brydget & I both try for that when we’re teaching, but this was a whole new level. It was quite a salutory eye-opener for me, as I’ve liked to think I’m an ‘inclusive’ teacher, but I’d never had this level of engagement from this particular cohort before, and I’ve learned now that I still have a long way to go..

We ended up going way over time and the students were buzzing when they left. Kevin always does a survey for his group work and I was really looking forward to the results: there’s a lot of evidence available on the effect of supporting Māori students’ learning styles, but I wanted to see how our own students had perceived the session. Fourteen of the 16 attendees completed the survey, & it turned out that

  • all 14 agreed that they could understand the presenter.
  • they loved the learning environment, commenting that it was easier to ask questions; they liked the interactions and group work & the opportunity to work out the answers; felt that I’d explained things clearly & liked it that I made sure they understood before we went on to a new topic; the sheer informality & friendly environment went down well.
  • they’d all recommend it to their friends (yay!) & rated it as either very good or excellent
  • and felt it was a great way to revise.

As I said, a salutory learning experience for me. I’ve always tried to make classes inclusive, interactive & so on, but it was obvious that the set-up of this particular workshop – with its focus on a specific cohort – provided the spark that was missing.

Even better, next morning a lot of the whanau participants came along to a standard tut with a lot of other students there, as they usually do – but this time things were different. They were much more active in the class, spoke up more and asked more questions than before; their confidence was at a whole new level. They were the only ones to point out to me that I’d made a mistake with labelling a diagram :) (And I said thank you, & that I appreciated it, & it showed they really understood that particular topic.) And afterwards some came up to say how much they’d enjoyed the whanau tut, and a couple followed me back to my office to ask more questions – also a first. And after the test last night I heard that they felt they were much better prepared, this time round. (I haven’t started the marking yet, but I am sooo hoping that this translates into improved grades!)

So yes, we’ll continue this for the rest of the semester, and on into the next half of the year. There’s nothing novel in what we did, & I certainly can’t claim any credit (there’s a lot in the literature on how best to help Māori students in tertiary classrooms eg here, here, here, & here). I’m just mentally kicking myself, and wishing we’d done it much sooner.

And I’m thinking: the Tertiary Education Commission has identified Maori and Pacific Island students as groups that TEC would like to see increasingly more involved with tertiary education. And to do that, and to maximise their learning success, we do need to reorganise our classrooms: eg do more flipping; get used to a higher level of chatter as students work together to solve problems; reduce the formality inherent in a ‘normal’ teacher-driven lecture class & sometimes become learners alongside our students. And that requires recognition that students’ needs have changed since those of my generation were on the learners’ side of the lectern, and that learning styles can and do differ & can be accommodated by using a range of teaching techniques. In other words, a classroom culture shift – one that sees educators recognising that they, too, can be learners when it comes to meeting the needs of a changing student demographic.

And of course, the evidence is already there that making these changes benefits all students.

April 25, 2015

how do we assess teaching quality?

Way back when I was a secondary teacher, & there were signs that the government of the day was looking at a possible move to performance pay, there were fairly frequent staffroom discussions discussions around how to assess the quality of one’s teaching. (There’s a much more recent report on this subject here.) One metric proposed was how many of your students passed School Cert. (I told you it was a long time ago!) That was all very well for those whose classes – we had streamed classes at my school – contained students who could mostly be expected to achieve rather well. I had one of those, but I also had the ‘problem’ 4th-form (year 10) class: kids who for a variety of reasons weren’t viewed by many as likely to pass.

I had no problems with that class. I had to teach them science, and so we ‘did’ science in contexts that they found engaging & relevant: the science of cooking, the science of cosmetics, & so on. We had a ball, & in the process they seemed to absorb some knowledge of science: what it was, & how it worked. But mostly they still didn’t attempt School C (the equivalent of today’s NCEA Level 1), & so by that rubric I’d have been judged a poor teacher. Perhaps, if we’d looked systematically at the level of prior knowledge those students entered my class with, and assessed the gains they made on that, both they and I would have been judged differently.

I was reminded of this during a discussion today about assessing the quality of teachers in a university setting. Now sure, we have a system of paper appraisals and teaching appraisals. But they aren’t shared with line managers as a matter of course, and so that can make things difficult during goal-setting and promotion rounds. For in the absence of that information, just how do line managers (& others) come to any evidence-based assessmentof a teacher’s abilities and performance in the classroom? I suspect the short answer is that they can’t, not really.

But even where the appraisal data are available, they shouldn’t be the only tool individuals (& managers) use to assess performance. I’m often told the appraisals are easy to ‘game’, although I’m not sure how correct that is; it does tend to assume that students aren’t able to assess papers and teacher performance reasonably well. I mean, statements like “this teacher made it clear what was expected of
me”, “this teacher made the subject interesting”, and “this teacher was approachable when advice or
help was required” are fairly objective, after all. But ideally they’d be just one element in an educator’s portfolio.

That portfolio could also include notes and commentary from an option that teachers in the compulsory sector will be used to: having a colleague sit in on a class and provide constructive feedback afterwards. In my experience this is rare in universities, which is a real pity, because both parties can learn a good deal from the experience. (We are accustomed, and encouraged, to have others cast a critical eye on our research outcomes, so why not our teaching?)

It could also include notes & reflections from the education literature. I firmly believe that while my teaching has to be informed by current research in my discipline (& I simply can’t imagine teaching the same thing, year after year!), it must also be informed by findings from research into pedagogy.  Things change, after all. Teaching & learning methods that might have seemed to work for those who taught me at uni are almost certainly out of date in today’s classrooms. As regular readers will know, I put much of my own reflection into writing these blog posts: the blog makes up a largish part of my own portfolio.

And of course, if you’re dipping into the literature, and attending seminars or workshops from your equivalent of our Teaching Development Unit, then you’ll pick up all sorts of other, informal, tips for gaining feedback on how things are going in the classroom. It’s worth linking back to a guest post from a my friend & colleague Brydget, as she summarises all this very well.

The trick, of course, is to work out how to present that information to one’s line manager :)

October 29, 2014

reflections on e-teaching and e-learning

Dear readers – what follows is a much longer post than I would normally write (& yes, at times I write some quite extensive posts!). This is because the current post constitutes my ‘portfolio’ to support nominations from my students for an e-learning award offered by my institution. I decided to write the portfolio in this form because blogging is a medium that I feel comfortable writing in, & because it’s so easy to add hyperlinks, files etc. (Consequently many of the links lead to my own reflective writing elsewhere on this blog, and to presentations I’ve given.) Plus I would really very much value feedback & comments – I don’t regard myself as anything approaching an expert (or even a journeyman) in this field and I know that my future practice will benefit from your insights.

That said, please do read on!

Technologies such as Moodle, panopto, AdobeConnect & the like allow access to learning opportunities  in a much more flexible way than the ‘traditional’ university environment, and this is going to become more and more important in the future as student demographics change. For example, as the number of people in the  18-25 age group continues to decline while the 50+ cohort continues to grow, then we will need to offer education to ‘non-traditional’ students and in ‘non-traditional’ ways. From an institutional perspective, using learning technologies in an interactive way can also help to ensure that we enhance retention and meet graduate profiles. For example, the graduate profile for our BSc says that students can communicate using a range of methods including multi-media (which includes web-based resources and activities), can work cooperatively, and have the skills necessary for self-directed learning: acquisition of all these attributes (plus the more usual acquisition-of-knowledge outcomes) can be supported by learning technologies, particularly those that are interactive.

So then, what does this look like in the context of my own teaching practice? I know some people see me as an ‘early adopter’ of classroom technologies like these, but on reflection I think my activities in this area have grown organically – much like my teaching career, I suppose.


Moodle and Facebook: 

Alison is constantly introducing new ways for us to learn through technology. From educational videos and other resources on Moodle to an accessible Facebook forum for students to share their own passion for biology, she has been experimenting successfully with the digital resources available to teachers at the University of Waikato.

Great at technology, innovative ideas (eg facebook page for 101)

Very helpful both during lectures and tutorials. Very active on Moodle, promptly responds to forum questions, has created a Facebook page for the paper.

(Student nominations, 2014 e-learning award)

I’ve used Moodle ever since it became available: paper outlines, study guide notes, powerpoints of lectures, assessment materials, quizzes, discussion forums, useful links & readings  – it’s all there. Once panopto came on-stream, links to lecture recordings went up on moodle as well, thanks to the WCeL wizards. I’ve always encouraged students to ask questions, join discussions, and post materials on Moodle (I have colleagues who’d rather receive individual emails but honestly! why answer the same question multiple times?) but interestingly, it was the first-year students who were most active in doing this.

However, in the last couple of years I’ve seen this activity drop right off, and it’s been something of a concern. Being asked for feedback on Moodle as part of the University’s process of identifying a new student management system really made me reflect more closely on this, partly in light of my own use of other on-line communities (not least of them, Facebook). From talking with students I gained the impression that moodle can be very ‘clunky’: it takes at least a couple of steps to arrive at a resource, whereas on FB links are right there and obvious. The students complained that they were continually having to log in to moodle during the day, in contrast to remaining logged in on FB, and that they preferred the FB notification system. This got me thinking about how best to use this as an additional way of supporting my students’ learning and increasing their engagement. (This is not to say that they don’t use Moodle: a recent survey I carried out with our 2nd-year students shows that they clearly do – but they just don’t engage to any great extent.)

There’s a lot of literature available now about using Facebook to support teaching and learning. Fittingly, I was introduced to some of it through the Ako Aotearoa Academy FB page that I administer, but I’ve since talked more widely about it with colleagues at other institutions and started delving more deeply into recent publications; for example, Dougherty & Andercheck, 2014 (my reflections on that paper are here), and Kent & Leaver’s 2014 e-book, “An education in Facebook?”. And I sounded out my students, who were extremely positive about the idea. The result: we have a Facebook page for the first-year biology class, where they regularly post material & start discussions, and where I post course information and questions or polls (all mirrored on our Moodle page), along with links to other, science-based, FB pages.

BIOL101 student post

BIOL101 2nd student post

My thoughts after a semester? Yes, it’s a bit of additional work, because notices, polls and so on must be posted in two places rather than one, and because there’s the need to interact with other posters. It would be good to see more students there – at present just over half the class is present and at least observing on FB – but (and it’s a big ‘but’), commenters are far more lively and engaged than on Moodle, which seems to be reserved for ‘serious’ questions. That engagement is important, as it contributes to enjoyment and performance. Plus there’s also evidence that engagement (or lack thereof) with study, with teachers, and with the institution – can affect student retention.

As an aside, the lack of ‘personal’ feel to many MOOCs is a shortcoming of this method of content delivery; as the author of this blog post has said,

I think most MOOCs are just textbooks for the Internet age. A brilliantly delivered lecture or a brilliantly written book are both good content delivery systems. But without interaction, feedback, and mutual accountability that is all they can be.

We have to ensure we deliver that personal touch!

Anyway, next year I’ll be more systematic about my use of Facebook in relation to my teaching, in the sense of examining whether there is any correlation between use of the page and academic outcomes. And I’ll use tools like ‘question of the week’ – on both Moodle and FB – to try to lift engagement further.


I leaped early into the panopto pool, and I’ve been splashing around in it ever since

Incorporates technology. Records every lecture for panopto and makes good use of moodle.

regular and helpful facebook user. encourages students to get involved in various online activities.

(Student nominations, 2014 e-learning award)

Panopto’s a tool for capturing classroom teaching and making it available on-line for students to access whenever they please. I first became aware of it when the University was gearing up for its i-TunesU presence, and decided that the technology had a lot to offer me and my students as a tool to enhance teaching and learning practices. (I am definitely not a fan of technology for technology’s sake – it needs to have a pedagogical benefit.) And I’ve been using it ever since – for lectures, for podcasts, for catching up when I’ve had to cancel a lecture due to illness. I promote it whenever I get the chance, in tearoom conversation but also at conferences and symposia (e.g. Fun with panopto). (I also use it to review and reflect on my own classroom performance; the recordings are really useful when considering whether something could have been better communicated, although they are certainly unforgiving when it comes to things like mannerisms and use of voice!)

Students certainly value this technology. It gives them the flexibility to balance workloads, manage lecture clashes, revise for tests and exams, and to be absent due to illness or family commitments. Of course, it also gives them the ability to simply skip class and promise themselves that they can catch up later, something the literature shows doesn’t necessarily happen. I believe that we (academics) need to be more forthright in communicating with students around this, but that’s not to say that we should reduce our use of lecture recordings!

Able to pause and go over things i don’t understand. Can also do them in my own time.

For me, Panopto is most valuable during study week for revisiting explanations rather than for catching up on missed lectures.

Usually if I don’t watch an entire lecture on panopto it was because I preferred the text-book or other material to the lecturer’s style of teaching, or because the lecture recording failed, or because I listened to the lecture on podcast.

(2014 student feedback via surveymonkey)

There’s a lot more to lecture recordings than this. They can be used for ‘catch-up’ snippets – recordings of the slides at the end of the lecture that you didn’t get to because there were concepts that needed additional explanations. But panopto also supports more active learning techniques such as flip teaching, where a lecturer can prepare a short recording for students to watch ahead of class, and the actual classroom time is used for group discussions and problem-solving. For a couple of years now I’ve been running ‘Design-an-animal/Design-a-plant’ classes (described in the previous link) to consolidate student learning in a fun and cooperative way, during the A semester.

(2013 student feedback: Aspects of the paper that should be maintained)

The design a plant exercise. This exercise ties the knowledge we have acquired in past weeks, producing a
comprehensive well developed understanding of the adaptations and functions of different plants

the “designing a plant” was a great activity that was very interesting and exciting

the flip class which was really fun.

And in the B semester this year we had a session on DNA technology, where the class decided they’d like to hear more about GMOs: I provided short explanatory clips on gene cloning and PCR & DNA sequencing for them to watch ahead of time, so that we could spend the ‘lecture’ on discussion (and a very wide-ranging discussion it proved to be!).

Furthermore, techniques like this have a clear and significant positive effect on student learning (eg Deslauriers, Schelew, & Wieman, 2011)Haak, HilleRisLambers, Pitre, & Freeman, 2011) and we need to encourage their wider use as we reshape ourselves as a true ‘university of the future’.



Educators aren’t just using techniques like this simply because the technology has become available. There have to be positive outcomes for the students. I touched on some of these at the beginning of this post, in the context of ensuring that students have gained the attributes we describe in our graduate profiles.

However, another big plus for digital learning technologies is the way in which they allow us to meet the different learning needs of students. (I’m inclined to agree with the author of this post regarding different learning styles, mind you.) For example:

  • They really open up the options for students for whom work commitments, or geographical isolation, mean that they can’t attend classes in the ‘normal’ university hours.
  • For all students, the ready availability of lecture recordings means that they can review a class, or part thereof, as often as they need in order to gain understanding of concepts and information.
  • Students who are ill, or have lecture clashes, or sudden family commitments, don’t have to stress too much about missing classes (but see the following paragraph :) )
  • The fact that recordings are downloadable as mp4 files means that students can use them pretty much where & when they choose – on the bus, perhaps, or sitting in a comfy chair at home.
  • It’s easy to incorporate video clips, or even music (albeit with a scientific message) into classes. This opens up a whole new range of resources to use with our students (and breaks up the ‘lecture’ format, re-energising the classroom). This has occasioned some ‘interesting’ discussions over the use of such material from other institutions: it’s not “our” learning material, and students should be seeing our resources and ideas. This is true, but why re-invent the wheel? If an excellent resource exists, then use it! – and enhance the role of facilitator of learning, rather than simply someone delivering facts.
  • Technologies also empower students in ways that we might not always consider – for example, setting up a Moodle discussion forum for anonymous use means that someone who might be too shy to speak up in the lecture theatre can ask their questions, & make comments, in a less-threatening environment.
  • And having just attended a session on the use of AdobeConnect, I can see (& will make use of) the potential in being able to set up a ‘virtual’ pre-exam tutorial, synchronous with an actual class, for students who can’t make it onto campus for that particular session: they can see & hear what’s going on & ask questions of their own, for example. (It looks like panopto on steroids so I will admit that I’m left wondering what will happen to the latter in the future.)

I feel very strongly, however, that while we definitely need to provide learning opportunities for academic staff around learning technologies, we also need to educate students around their use. Despite the frequent use of the term ‘digital natives’ in discussion around our students and e-learning, the description really doesn’t fit our current cohort particularly well, and there’s a very interesting discussion of the term here. (It may be another story when the current crop of under-5s reach tertiary classrooms as many of them have truly grown up immersed in and using on-line technologies. And having said that, we also need to remember that there remain sectors of society who simply cannot afford to access the hardware to enable such learning. How do we enable them?) This means walking the class through what’s available on moodle, for example, or how to download an mp4 file of a panopto recording. But it also means discussing with our students – very early on in the piece – the perils and pitfalls of relying on recordings as an alternative to actually being in class eg the frightening ease with which you can fall behind in watching lectures after the event. This should be done with all first-year classes: many of this cohort have difficulty adapting to the different requirements, expectations, and learning environments of the tertiary system as it is and, lacking time management skills, can very easily fall off the wagon – something that has implications for both completion and retention.

She is very helpful and she knows her topic well. Very organised and goes beyond her duty to make sure students are getting everything in order to succeed. 
I think she is a really great lecturer and has used a range of different tools to help us learn in her lectures such as a drawing tool on the computer and has also created a Facebook page for BIOL102 to make it more interactive and fun to learn for everyone enrolled in the paper.
She is a really great lecturer, who makes a lot of effort to ensure her students get all the information they need to learn about what she is teaching. she also takes the time to make sure that students questions are answered, and always keeps in mind that because students have different learning levels, that she gives all the information required. 
Demonstrates a real passion for what she teaches. 
(Student nominations, 2014 e-learning award)


As I said earlier, I definitely don’t see myself as an expert in this field! This means that I frequently reflect on my classroom practice and the things I’ve learned (the focus of many of the posts here on Talking Teaching!), and I take advantage of professional development opportunities as often as I can. In the past I’ve attended quite a few workshops on various aspects of Moodle (and the on-line support materials are very useful too; thanks, WCeL team!). The university’s Teaching Development staff run regular Teaching Network sessions, where participants learn from each other on a whole range of teaching-related issues, & I go to these at every available opportunity. The most recent session, by Alan Levine, introduced the idea of pechaflickr as a tool for engagement and for learning, and that’s led me to think about using a pechaflickr session in tutorials, as a fun change of pace but also of a means of checking understanding of particular concepts. Definitely one for next year.

Sharing is good. And so I promote these technologies when I get the chance :) This year I facilitated a session on flip teaching at our annual WCeLfest (where I gained a lot from the participants’ feedback), but was also invited to take part as a panellist in a discussion of what our university might look like in a future where distance and blended learning make much more use of digital learning & teaching technologies. And I’ve previously shared their application at other conferences – in a 2013 discussion around how teachers’ roles are changing from disseminators of facts to facilitators of learning, for example. In addition, I led a discussion about MOOCs at a UoW Council planning day earlier this year, which also formed the basis of this particular post.

Learning technologies also have huge potential in terms of outreach to the wider community. For example, since 2005 I’ve been running Scholarship Biology preparation days for students – and their teachers – preparing for the Scholarship Biology examinations, which has involved travelling to deliver sessions in the Bay of Plenty, Taranaki, Auckland and Hawkes Bay, as well as in Hamilton itself. (I also write another blog, originally intended to support these students and still containing a considerable amount of material that’s useful to them and their teachers.) But these face-to-face sessions are one-offs, as it were, so this year I decided to set up a Facebook page so that interactions and support could continue. Feedback from the teachers is very positive. Sadly,  the students have not been so engaged on the page,  although the teachers tell me their students are definitely using material from the page in class,  which is a great outcome from my perspective. I’ll leave this one up and running and hopefully, as resources build up and teachers encourage their students to use it from the beginning of the year, we’ll start to see some more active student participation. I can also see the value in using AdobeConnect to run occasional virtual tutorials for this far-flung group of students – it would be particularly valuable for those students who are the only one at their particular school sitting this exam, as they’d get the opportunity to interact with others (&, if I can work out how to set it up!) work cooperatively with them to solve problems in an on-line active-learning world.

Schol Bio FB feedback


 If you’ve read this far – thank you for staying with me :) I appreciate your company on what is for me a continuing journey of self-reflection and learning around my teaching practice. I’ll be grateful for your feedback – and I do so hope you don’t feel you’d have been better off sitting at home in your bunny slippers :)

best wishes, Alison

June 9, 2014

carl wieman on active learning

Recently I wrote about a paper by Freeman et al: a meta-analysis looking at the impact of active learning on student success in maths, engineering, & the sciences (the ‘STEM’ subjects). In the same volume of PNAS is an accompanying commentary by Carl WiemanWieman is a physics Nobel Laureate who also leads a research group working on improving teaching & learning in maths, engineering, & the sciences (which has resulted in some interesting initiatives at other institutions). Commenting on Freeman’s results, he notes that

Freeman et al. argue that it is no longer appropriate to use lecture teaching as the comparison standard, and instead, research should compare different active learning methods, because there is such overwhelming evidence that the lecture is substantially less effective. This makes both ethical and scientific sense.

Wieman goes on to say

However, in undergraduate STEM education, we have the curious situation that, although more effective teaching methods have been overwhelmingly demonstrated, most STEM courses are still taught by lectures – the pedagogical equivalent of bloodletting. Should the goals of STEM education research be to find more effective ways for students to learn or to provide additional evidence to convince faculty and institutions to change how they are teaching?

Personally I’d go for the former; there’s a wealth of information out there now. What’s needed now is to somehow get more university STEM educators to engage with the scholarship of teaching & learning in their various disciplines. Now there’s a challenge!

C.E.Wieman (2014) Large-scale comparison of science teaching methods sends clear message. PNAS published ahead of print, May 22 2014.

June 1, 2014

“If you’re going to get lectured at, you might as well be at home in bunny slippers”

This is a post I first wrote for the Bioblog.

There’s an increasing body of literature demonstrating the benefits of active learning for tertiary students taking science subjects. This is a topic I’ve written about before, but I’m always interested in reading more on the subject. And let’s face it, the more evidence the better, when you’re wanting to get lecturers in the sciences engaged in discussion around different ways of teaching. As you’ll have gathered, I find a lot of new science & education material via alerts on Facebook, as well as through the more conventional journal feeds & email alerts, and so it was with this recent paper by Scott Freeman & colleagues, which looks at the effect of active learning on student performance in science, technology, engineering and maths (STEM) classes: I saw it first described in this post1 (whence also comes the quote I’ve used as my title).

The paper by Freeman et al (2014) is a meta-analysis of more than 200 studies of teaching methods used in STEM classes, which included “occasional group problem-solving, worksheets or tutorials completed during class, use of personal response systems with or without peer instruction, and studio or workshop course designs” (ibid.). The impact of the various methods on student learning was measured in two ways: by comparing scores on the same or similar examinations or concept inventories; and by looking at the percentage of students who failed a course.

What did their results show? FIrstly, that students’ mean scores in exams assessing work covered in active learning classes improved by around 6% over more traditional teaching-&-learning formats (& finding that matches those of earlier studies); and secondly, that students in those traditional classes “were 1.5 times more likely to fail”, compared to students given in-class opportunities for active learning (with a ‘raw failure’ rate averaging 33.8% in traditional lecturing classes and 21.8% in more active classes). These results held across all STEM subjects. The researchers also found that active-learning techniques had a stronger effect on concept inventories compared to formal exams (& here I’m wondering if that doesn’t reflect – at least in part – the nature of the exams themselves eg did they give opportunities to demonstrate deep learning?) Interestingly, while the positive impact of active learning was seen across all class sizes, it was more pronounced in classes of less than 50 students.

On the class size thing, I’m wondering if that might be because it’s easier to get everyone actively involved, in a smaller class? For example, I’ve got a colleague at another institution who runs a lot of his classes as ‘flipped’ sessions, and ensures that all students get the opportunity to present to the rest of the group – this is far easier to set up in a class of 50 than in a group with 200+ students in it. (I know! When I run ‘design-a-plant/animal’ sessions, there’s time for only a sub-set of student ‘teams’ to present their creatures to the rest of the class. Plus you really have to work at making sure you get around all teams to talk with them, answer questions, & so on, and so it’s perhaps more likely that someone can remain uninvolved.)

The research team concluded:

Finally, the data suggest that STEM instructors may begin to question the continued use of traditional lecturing in everyday practice, especially in light of recent work indicating that active learning confers disproportionate benefits for STEM students from disadvantaged backgrounds and for female students in male-dominated fields. Although traditional lecturing has dominated undergraduate instruction for most of a millenium and continues to have strong advocates, current evidence suggests that a constructivist “ask, don’t tell” approach may lead to strong increases in student performance, amplifying recent calls from policy-makers and researchers to support faculty who are transforming their STEM courses.

The ‘bunny slippers’ quote from the lead author comes from the post that originally caught my eye. And I suspect there may well be bunny slippers (or the equivalent) in evidence when my own students watch lecture recordings at home :) But this does raise a question around massive open on-line courses (MOOCs), which tend to have a very high ‘fail’ rate – how much of this might be attributed to the difficulty in ensuring opportunities for active learning in these ‘distance’ classes?

And of course, we aren’t really talking a simple dichotomy between ‘traditional’ lecture classes and classes with a very high component of active-learning opportunities – something the research team also note: some of the ‘non-traditional’ methods they surveyed had only a 10-15% ‘active’ component. This is something discussed at more length by Alex Smith in a post entitled “In Defence of the Lecture”. I have to say that his approach sounds very similar to mine, with its mix of socratic questioning, pop quizzes, group discussions, and – yes – sections of ‘lecture’. As Small says:

Not every lecture is a person spending an hour talking nonstop to deliver facts. A good lecture is engaging, it naturally invites discussion and dialogue, it operates at a level much higher than raw information delivery, it is a natural setting for the expert to act as a role model, and it can be integrated with more formal activities (e.g., clicker questions, small-group discussions, etc.).

Lecture should not be the sole means of instruction, and bad lectures are a plague demanding eradication, but we err when we too strenuously inveigh against the lecture.

I couldn’t agree more. And maybe that’s a message that’s being lost in the louder discussion around active learning, and which needs to be heard more widely.

1 The comments thread for this story is also worth reading.

S.Freeman, S.L.Eddy, M.McDonough, M.K.Smith,N.Okorofor, H.Jordt & M.P.Wenderoth  (2014) Active learning increases student performance in science, engineering, and mathematics.

February 7, 2014

not science as I know it

This was first posted on my ‘other’ blog :)

By accident,  I came across the curriculum document for Accelerated Christian Education (ACE) which provides teaching & learning materials to parents who are homeschooling their children. New Zealand students who complete the program right  to year 13 gain university entrance.

Home Schooling NZ gives parents advice about the ACE program, but makes it clear that HSNZ does not work for Accelerated Christian Education or sell their teaching & assessment materials.  However, I was startled to see the following listed by HSNZ as one of the ‘distinctives’ [sic] of the ACE program:

Each student is taught from a biblical perspective developing critical thinking skills that will enable them to discern what is truly “…the good and acceptable and perfect will of God.” (Romans 12:2)

Having had a fair bit to do with the development of the Science section of the current national curriculum document, specifically, the Living World component, I was naturally interested in seeing how ACE handles a science curriculum. The answer is, poorly.

In fact, I feel that it’s most unfortunate that the ACE science program is officially recognised here, given statements such as this from Sir Peter Gluckman (the PM’s Chief Science Advisor) about the importance of science and science education. For example, from the curriculum overview material for grade 1 students we learn that students will

  • [pronounce and learn] new vocabulary words as they are defined and used in the text
  • [discover] God’s wisdom as he1 learns about God creating Earth…
  • [learn] about the design and care of the human eye and ear; high, low, soft and loud sounds.
  • [learn] about the importance of personal health – clean teeth and hands.
  • [gain] a respect for God as he learns about God’s wisdom, goodness, kindness, and that all things belong to God.
  • [read] stories and answer questions about God’s creation.
  • [continue] to build eye-hand coordination by drawing shapes, irregular shapes, and directional lines.

That’s it.

In contrast, the New Zealand Curriculum document has a number of subject-specific achievement aims for students at this level, in addition to those relating specifically to the nature of science. For example, students in their first year or two of primary school should

  • Learn about science as a knowledge system: the features of scientific knowledge and the processes by which it is developed; and learn about the ways in which the work of scientists interacts with society.
  • Appreciate that scientists ask questions about our world that lead to investigations and that open-mindedness is important because there may be more than one explanation.
  • Explore and act on issues and questions that link their science learning to their daily living.

Remember, that’s in addition to the achievement aims for biology (Living World), chemistry (Material World), earth sciences (Planet Earth & Beyond). and physics (Physical World).

And so it continues. I mean, how could this (from the ACE objectives for Grade 3) be construed as science by anyone assessing the document?

Studies Bible topics such as Jesus’ return; sin, death, and the curse; man’s freedom to choose to love and obey God.

Or this?

Discovers the Bible to be the final authority in scientific matters.

Science, it ain’t. It would appear that helping students to gain and enhance critical thinking skills isn’t on the curriculum either – after all, teaching students to look to authority for the answers runs completely counter to encouraging critical thinking and teaching students how to weigh up evidence.

While I haven’t read all the PACEs available for the curriculum, partly because I am not going to buy them in order to do so, I have read through the samples available on line. Among other things, the materials I viewed encouraged rote learning rather than deep, meaningful understanding of a subject – a long way indeed from current best-practice models of teaching & learning.

However, others have read ACE’s PACE documents, & have been extremely critical of them. The Times Education Supplement, for example, was startled to find that ACE materials available in 1995 contained the claim that the Loch Ness Monster has been reliably identified and seems to be a plesiosaur. (It seems this reference has since been removed from new textbooks published in Europe.)

The TES also addressed some rather trenchant comments to the UK educational body responsible for giving the ACE curriculum equivalent status to O and A level examinations. Perhaps the NZ equivalent of that body should give the ACE documents a closer second look.


1 No female pronouns used, that I could see. (No room for female scientists in this curriculum, either – students are introduced to ‘early men in science’.)


January 21, 2014

teaching laboratories – the shape of things to come?

A quick post from notes I took during another talk at the Ako Aotearoa Symposium last December: this was an exciting presention on the changing form of teaching laboratories, by Ken Collins and Joanne Kelly from Labworks Architecture (another colleague also mentioned this session, in her own post on the day’s proceedings).  Ken & Joanne began by noting that lab spaces are used for students to gain and enhance a range of skills: critical thinking, developing solutions to problems, working collaboratively, practising practical skills. ‘Traditional’ lab spaces don’t really accomodate all this, they said, & went on to explain why & to share with us some of the solutions they’ve developed for various clients.

Their focus was on the links between space, technology, and pedagogy (something that’s been missing in most of the labs I’ve taught in, where the technology’s been retrofitted as need and funding dictate). Having more flexible spaces encourages pedagogy, which in turn is enabled by space. Pedagogy is enhanced by technology, which will also place demands on space – after all, if you’re using computer screens to show things, you want to be in a room where all students have a clear line of sight to the sceens. In other words, a modern teaching space embeds technology, which of course extends how we use the space. (I see this a lot in the way our wonderful first-year tutor delivers our lab classes, retrofitted technology & all.)

More & more, this is equally true for how we use lecture/tutorial spaces.

‘Old-style’ learning spaces have always tended to focus on the perceived needs of the teacher, & to support highly structured, teacher-led, ‘instructional’ (didactic) learning experiences. Joanne & Ken believe – & I think most of those who attended their presentation would agree – that these days, in a modern classroom, about 15% of lab-room learning would be teacher-led. Of the remainder around would see students collaborating on various investigations 75% – ie there’s much more collaborative problem-solving, which realistically is how many workplaces operate anyway – and the remaining time is given over to small- & large-group discussion & feedback. It’s arguable whether that’s best done in a lab, & so the presenters showed classrooms they’ve designed where glass doors separate formal lab space from breakout spaces. I immediately added that to my mental ‘I’d really like this for our students’ list :)

They concluded by asking us to think about classroom space in general. We’re already seeing a move from libraries as study environment to ‘hubs’, with individual work spaces alongside commons, cafes, and alcoves where people can chill out or just sit for a quiet discussion. What will the future be like, as we continue down this road? (More virtual reality, perhaps? At a previous symposium we heard about the use of ‘virtual labs’, for example, via Second Life, allowing students to practice lab skills & protocols before actually coming into the real-world lab.) Certainly any changes should allow & support innovative practice in teaching & learning; for example, new lecture theatres could be low-pitched rather than steep, with room to move between rows, & thoroughly technology-enabled.

I’ll have to make sure these options are on the table, when the time for lab refurbishment rolls round.

Older Posts »

Blog at