Talking Teaching

June 9, 2014

carl wieman on active learning

Recently I wrote about a paper by Freeman et al: a meta-analysis looking at the impact of active learning on student success in maths, engineering, & the sciences (the ‘STEM’ subjects). In the same volume of PNAS is an accompanying commentary by Carl WiemanWieman is a physics Nobel Laureate who also leads a research group working on improving teaching & learning in maths, engineering, & the sciences (which has resulted in some interesting initiatives at other institutions). Commenting on Freeman’s results, he notes that

Freeman et al. argue that it is no longer appropriate to use lecture teaching as the comparison standard, and instead, research should compare different active learning methods, because there is such overwhelming evidence that the lecture is substantially less effective. This makes both ethical and scientific sense.

Wieman goes on to say

However, in undergraduate STEM education, we have the curious situation that, although more effective teaching methods have been overwhelmingly demonstrated, most STEM courses are still taught by lectures – the pedagogical equivalent of bloodletting. Should the goals of STEM education research be to find more effective ways for students to learn or to provide additional evidence to convince faculty and institutions to change how they are teaching?

Personally I’d go for the former; there’s a wealth of information out there now. What’s needed now is to somehow get more university STEM educators to engage with the scholarship of teaching & learning in their various disciplines. Now there’s a challenge!

C.E.Wieman (2014) Large-scale comparison of science teaching methods sends clear message. PNAS published ahead of print, May 22 2014. http://www.pnas.org/cgi/doi/10.1073/pnas.1407304111

March 12, 2014

teaching plant life cycles – trying a different approach

For whatever reason, I find that many students seem to struggle when it comes to learning about plant life cycles. The whole sporophyte/gametophyte, meiosis/mitosis thing really gets them – & that’s even before we start looking at how the life cycle is modified in different groups of plants. Yes, the textbook has lots of diagrams & yes, I’ve always started simple & worked on from there, with opportunity for plenty of questions, but still there are those for whom the topic fails to click. (Not to mention the lecturers in third-year classes, asking whether we really teach this stuff in first-year.) This year the issue’s become even more of a challenge, given that about 2/3 of my large-ish (N>200) didn’t study plants in year 12 at school.

So this year I wondered if it would help if I drew a really basic cycle on the board, as preparation for a more detailed session in the next lecture. I do this in tuts anyway, but not everyone comes to those… And because I use panopto for recording lectures, I needed to think about the best way to do it, because while there are whiteboards in the lecture room they are non-interactive, & the camera doesn’t do a good job of picking up things on a ‘normal’ board. And this is where having a tablet (not an iPad this time; it’s too frustrating when mine won’t communicate properly with the lecture theatre software) comes into it.

This is because, once the tablet’s hooked up to the lecture room system, then anything I might write on its screen (with my spiffy little stylus) is recorded via panopto. And so I left blank slides in my presentation, & drew all over them when we got to that stage, cute little frogs & everything :) (Why frogs? Because we started off with drawing an outline of an animal life cycle, slotting in meiosis & fertilisation, haploid & diploid – with the opportunity to expand on what those terms might mean – before going on to drawing alternation of generations in a very general sense.

Which sounds fine in practice, doesn’t it? Unfortunately, now that I’ve gone & checked the recording, I see that the material on my tablet DIDN’T make it across to panopto, which is downright annoying & obviously I’ve stuffed up somewhere. OK, everyone in the lecture theatre got the benefit of that experience, but those who weren’t, didn’t :( And part of the reason for doing the recordings, is that those who’ve got lecture clashes can catch up later. Mutter mutter mutter.

However, all is not lost. I’m staying later at work for an evening event, so I’ll do a re-record once I can get into a free lecture theatre.

All part of the learning curve – as is the anonymised ‘feedback’ thread I’ve set up on our Moodle page. If the technique helped most students understand the concept of alternation of generations, then I’ll work on doing it better. If it didn’t, well, I guess I need to go back to the drawing board.

February 16, 2014

presenting on plants at WCeLfest

This post was first published on my ‘other’ blog.

For the last few years our Centre for e-Learning has run WCeLfest – a day of presentations & discussion around using various technology tools to enhance teaching & learning. I always find these sessions very valuable as there are a lot of people doing some really interesting things in their classrooms, & there’s always something new to learn & try out myself. I offered to run a session myself this year, which is what I’m going to talk about here, but I was also asked to be on the panel for a discussion around what universities might look like in the future, and that was heaps of fun too.

My WCeLfest session was billed as a workshop, so to kick things off I explained that the attendees were going to experience being in what is effectively a ‘flipped’ class, getting the students’ perspective, and why I’d developed the class in the way that I had. (I added that feedback on that experience was welcome!) I think there was one biologist in the room, so for most of those present the things they’d be doing would be just as novel as they will be for many of my students.

First, my ‘class’ got some extra background information. If previous years are anything to go by, then about a third of the students in my first-year biology class won’t have studied the year 12 Achievement Standards related to plants1. This always poses something of a challenge as we run the ‘plants’ part of the paper first, flowers & fruit being readily available in late summer (& I doubt things would be different if we taught it later in the paper). So I’m always thinking about improved ways to bridge students into the subject without boring those who have a reasonable background in things botanical.

The first lecture looks at what plants are & why they’re important, both ecologically & in terms of human history. For the last 2-3 years I’ve used an active learning exercise, putting up a graph on changes in atmospheric oxygen over the 4.5 billion years of Earth’s existence and asking the students to interpret and discuss the information it shows. But, using the same graph with a different group of learners, I realised that some of my students might not even know what photosynthesis entails, which would rather destroy the purpose of that part of the class.

So this year, they’re getting homework for the night before: this video. And at WCeLfest, we watched it together.

As you’ll have seen, there are a few, very basic, questions at the end of the video, but we stopped the video before reaching the quiz & instead briefly discussed and answered each question in groups, plus there were some additional queries, which was great. The original set of questions reinforce the basic concepts & give those students who were unfamiliar with them a bit of confidence that they’re prepared for the next step.

Now, for my ‘real’ class I’ll be showing an additional, more complex video, but for this shorter session we just moved on to the data interpretation.

Again, I explained the rationale behind this part of the session. I’d decided to do this exercise with my first-year students for a couple of reasons: firstly, to break up the class and get them actively engaged in the learning process; and secondly, to give practice in the process skills needed to interpret information provided in graphical form. The question they needed to address, using their knowledge from the video and the data in the graph, was: without plants, life as we know it wouldn’t have evolved in the first place. Why not?

O2 concn over time.png

As I do in my normal classes, while the class split into groups to come up with an answer, I circulated between those groups2 in order to hear what was going on & field any additional questions. “What was the atmosphere made of before photosynthesis began?” was one, which led to a brief consideration of how the Earth formed. And I needed to explain oxidised/oxidation, as well. This was a really valuable process for me as it’s highlighted a couple of areas where I need to do a little more background work with my first-years.

A quick summary of the class discussion: the ‘oxidation’ part is important because that’s how we know when oxygen generation began – iron-rich rocks began to rust. It wasn’t until the exposed rocks had been oxidised and the ocean had become saturated with oxygen, that oxygen began to be released into the atmosphere, as evidenced by more oxidised rock. As O2 accumulated in the atmosphere, the ozone layer formed, offering protection from the sun’s UV radiation & allowing living things to move onto the land.

And we finished with a quick look at the ‘design-an-organism’ class that I’ve previously blogged about.

The feedback was very positive, with several people saying that they could see how they might use the flipped classroom technique in their own teaching. It was also lovely to hear someone say that they’d got a bit worried when they realised we’d be talking science, but that they’d really enjoyed the experience and learned some new things along the way. And I’d learned ways to improve the exercise, so the enjoyment & learning were mutual

1 These are AS91155 Demonstrate understanding of adaptation of plants or animals to their way of life, and AS91156 Demonstrate understanding of life processes at the cellular level. You’ll find them here on the NZQA website.

2 In my ideal class3 there’d be an ‘aisle’ between every 2 rows of seating, to allow teachers/facilitators to move more freely among the students.

3 I can dream, can’t I?

February 7, 2014

not science as I know it

This was first posted on my ‘other’ blog :)

By accident,  I came across the curriculum document for Accelerated Christian Education (ACE) which provides teaching & learning materials to parents who are homeschooling their children. New Zealand students who complete the program right  to year 13 gain university entrance.

Home Schooling NZ gives parents advice about the ACE program, but makes it clear that HSNZ does not work for Accelerated Christian Education or sell their teaching & assessment materials.  However, I was startled to see the following listed by HSNZ as one of the ‘distinctives’ [sic] of the ACE program:

Each student is taught from a biblical perspective developing critical thinking skills that will enable them to discern what is truly “…the good and acceptable and perfect will of God.” (Romans 12:2)

Having had a fair bit to do with the development of the Science section of the current national curriculum document, specifically, the Living World component, I was naturally interested in seeing how ACE handles a science curriculum. The answer is, poorly.

In fact, I feel that it’s most unfortunate that the ACE science program is officially recognised here, given statements such as this from Sir Peter Gluckman (the PM’s Chief Science Advisor) about the importance of science and science education. For example, from the curriculum overview material for grade 1 students we learn that students will

  • [pronounce and learn] new vocabulary words as they are defined and used in the text
  • [discover] God’s wisdom as he1 learns about God creating Earth…
  • [learn] about the design and care of the human eye and ear; high, low, soft and loud sounds.
  • [learn] about the importance of personal health – clean teeth and hands.
  • [gain] a respect for God as he learns about God’s wisdom, goodness, kindness, and that all things belong to God.
  • [read] stories and answer questions about God’s creation.
  • [continue] to build eye-hand coordination by drawing shapes, irregular shapes, and directional lines.

That’s it.

In contrast, the New Zealand Curriculum document has a number of subject-specific achievement aims for students at this level, in addition to those relating specifically to the nature of science. For example, students in their first year or two of primary school should

  • Learn about science as a knowledge system: the features of scientific knowledge and the processes by which it is developed; and learn about the ways in which the work of scientists interacts with society.
  • Appreciate that scientists ask questions about our world that lead to investigations and that open-mindedness is important because there may be more than one explanation.
  • Explore and act on issues and questions that link their science learning to their daily living.

Remember, that’s in addition to the achievement aims for biology (Living World), chemistry (Material World), earth sciences (Planet Earth & Beyond). and physics (Physical World).

And so it continues. I mean, how could this (from the ACE objectives for Grade 3) be construed as science by anyone assessing the document?

Studies Bible topics such as Jesus’ return; sin, death, and the curse; man’s freedom to choose to love and obey God.

Or this?

Discovers the Bible to be the final authority in scientific matters.

Science, it ain’t. It would appear that helping students to gain and enhance critical thinking skills isn’t on the curriculum either – after all, teaching students to look to authority for the answers runs completely counter to encouraging critical thinking and teaching students how to weigh up evidence.

While I haven’t read all the PACEs available for the curriculum, partly because I am not going to buy them in order to do so, I have read through the samples available on line. Among other things, the materials I viewed encouraged rote learning rather than deep, meaningful understanding of a subject – a long way indeed from current best-practice models of teaching & learning.

However, others have read ACE’s PACE documents, & have been extremely critical of them. The Times Education Supplement, for example, was startled to find that ACE materials available in 1995 contained the claim that the Loch Ness Monster has been reliably identified and seems to be a plesiosaur. (It seems this reference has since been removed from new textbooks published in Europe.)

The TES also addressed some rather trenchant comments to the UK educational body responsible for giving the ACE curriculum equivalent status to O and A level examinations. Perhaps the NZ equivalent of that body should give the ACE documents a closer second look.

 

1 No female pronouns used, that I could see. (No room for female scientists in this curriculum, either – students are introduced to ‘early men in science’.)

 

January 21, 2014

teaching laboratories – the shape of things to come?

A quick post from notes I took during another talk at the Ako Aotearoa Symposium last December: this was an exciting presention on the changing form of teaching laboratories, by Ken Collins and Joanne Kelly from Labworks Architecture (another colleague also mentioned this session, in her own post on the day’s proceedings).  Ken & Joanne began by noting that lab spaces are used for students to gain and enhance a range of skills: critical thinking, developing solutions to problems, working collaboratively, practising practical skills. ‘Traditional’ lab spaces don’t really accomodate all this, they said, & went on to explain why & to share with us some of the solutions they’ve developed for various clients.

Their focus was on the links between space, technology, and pedagogy (something that’s been missing in most of the labs I’ve taught in, where the technology’s been retrofitted as need and funding dictate). Having more flexible spaces encourages pedagogy, which in turn is enabled by space. Pedagogy is enhanced by technology, which will also place demands on space – after all, if you’re using computer screens to show things, you want to be in a room where all students have a clear line of sight to the sceens. In other words, a modern teaching space embeds technology, which of course extends how we use the space. (I see this a lot in the way our wonderful first-year tutor delivers our lab classes, retrofitted technology & all.)

More & more, this is equally true for how we use lecture/tutorial spaces.

‘Old-style’ learning spaces have always tended to focus on the perceived needs of the teacher, & to support highly structured, teacher-led, ‘instructional’ (didactic) learning experiences. Joanne & Ken believe – & I think most of those who attended their presentation would agree – that these days, in a modern classroom, about 15% of lab-room learning would be teacher-led. Of the remainder around would see students collaborating on various investigations 75% – ie there’s much more collaborative problem-solving, which realistically is how many workplaces operate anyway – and the remaining time is given over to small- & large-group discussion & feedback. It’s arguable whether that’s best done in a lab, & so the presenters showed classrooms they’ve designed where glass doors separate formal lab space from breakout spaces. I immediately added that to my mental ‘I’d really like this for our students’ list :)

They concluded by asking us to think about classroom space in general. We’re already seeing a move from libraries as study environment to ‘hubs’, with individual work spaces alongside commons, cafes, and alcoves where people can chill out or just sit for a quiet discussion. What will the future be like, as we continue down this road? (More virtual reality, perhaps? At a previous symposium we heard about the use of ‘virtual labs’, for example, via Second Life, allowing students to practice lab skills & protocols before actually coming into the real-world lab.) Certainly any changes should allow & support innovative practice in teaching & learning; for example, new lecture theatres could be low-pitched rather than steep, with room to move between rows, & thoroughly technology-enabled.

I’ll have to make sure these options are on the table, when the time for lab refurbishment rolls round.

December 12, 2013

Evaluating teaching the hard-nosed numbers way

[This is a copy of a post on my blog PhysicsStop, sci.waikato.ac.nz/physicsstop, 10 December 2013]

Recently there’s been a bit of discussion in our Faculty on how to get a reliable evaluation of people’s teaching. The traditional approach is with the appraisal. At the end of each paper the students get to answer various questions on the teacher’s performance on a five-point Likert Scale (i.e. ‘Always’, ‘Usually’, ‘Sometimes’, ‘Seldom’, ‘Never’.)  For example: “The teacher made it clear what they expected of me.” The response ‘Always’ is given a score of 1, ‘Usually’ is given 2, down to ‘Never’ which is given a score of 5. An averaged response of the questions across students gives some measure of teaching success – ranging in theory from 1.0 (perfect) through to 5.0 (which we really, really don’t want to see happening).

We’ve also got a general question – “Overall, this teacher was effective”. This is also given a score on the same scale.

A question that’s been raised is: Does the “Overall, this teacher was effective” score correlate well with the average of the others?

I’ve been teaching for several years now, and have a whole heap of data to draw from. So, I’ve been analyzing it (for 2008 onwards), and, in the interests of transparency, I’m happy for people to see it.  For myself, the question of “does a single ‘overall’ question get a similar mark to the averaged response of the other questions?” is a clear yes. The graph below shows the two scores plotted against each other, for different papers that I have taught. For some papers I’ve had a perfect score – 1.0 by every student for every question. For a couple scores have been dismall (above 2 on average):

Capture1.JPG

What does this mean? That’s a good question. Maybe it’s simply that a single question is as good as a multitude of questions if all we are going to do is to take the average of something. More interesting is to look at each question in turn. The questions start with “the teacher…” and then carry on as in the chart below, which shows the responses I’ve had averaged over papers and years.
Capture2.JPG
Remember, low scores are good. And what does this tell me? Probably not much that I don’t already know. For example, anecdotally at any rate, the question “The teacher gave me helpful feedback” is a question for which many lecturers get their poorest scores (highest numbers). This may well be because students don’t realize they are getting feedback. I have colleagues who, when they give oral feedback, will prefix what they say with “I am now giving you feedback on how you have done” so that it’s recognized for what it is.
So, another question. How much have I improved in recent years? Surely I am a better teacher now than what I was in 2008. I really believe that I am. So my scores should be heading towards 1.  Well, um, maybe not. Here they are. There are two lines – the blue line is the response to the question ‘Overall, this teacher was effective’, averaged over all the papers I took in a given year; the red line is the average of the other questions, averaged over all the papers. The red line closely tracks the blue – this shows the same effect as seen on the first graph. The two correlate well.
Capture3.JPG
So what’s happening. I did something well around 2010 but since then it’s gone backwards (with a bit of a gain this year – though not all of this year’s data has been returned to me yet). There are a couple of comments to make. In 2010 I started on a Post Graduate Certificate of Tertiary Teaching. I put a lot of effort into this. There were a couple of major tasks that I did that were targeted at implementing and assessing a teaching intervention to improve student performance. I finished the PGCert in 2011. That seems to have helped with my scores, in 2010 at least. A quick peruse of my CV, however, will tell you that this came at the expense of research outputs. Not a lot of research was going on in my office or lab during that time.  And what happened in 2012? I had a period of study leave (hooray for research outputs!) followed immediately by a period of parental leave. Unfortunately, I had the same amount of teaching to do and that got squashed into the rest of the year. Same amount of material, less time to do it, poorer student opinions. It seems a logical explanation anyway.
Does all this say anything about whether I am an effective teacher? Can one use a single number to describe it? These are questions that are being considered. Does my data help anyone to answer these questions? You decide.

December 5, 2013

nz’s pisa rankings slip, & the soul-searching begins

Filed under: education, science teaching — Tags: , , , , — alison @ 11:06 am

The latest PISA results are out, and NZ – despite remaining in the ‘above the average’ group for OECD countries – has nonetheless  slipped in this measure of achievement in reading, maths administered by the Programme for International Student Assessment . This is of concern, & there are probably multiple complex causes for our decline. Certainly the previous PISA commentary (2009) recommended that we pay attention to matters of inequality (There’s interesting commentary here, & also on the RNZ website.)

This morning’s Dominion-Post (I’m in Wellington at the moment, at a teaching symposium) carries a story giving a primary-teaching perspective.There are two key issues here: many primary teachers lack a science or maths background; and primary teachers in general are not well supported to teach these specialist sujects. (The removal of specialist science advisors - something I’ve commented on previously – did not help things.) This is important, because if students don’t gain a good understanding of these subjects – and good experiences of them! – during primary school, then they’ll basically be playing catch-up when they arrive in specialist secondary school classrooms.  Sir Peter Gluckman’s suggestion (in his report Looking ahead: science education in the 21st century) that each primary school have a ‘science champion’ would help here, but in the medium-to-long term it would probably be even better if intending primary school teachers received much greater exposure to the STEM subjects to begin with.

Should we worry? Yes, but I definitely agree with Fiona Ell, from the University of Auckland, who’s quoted in this morning’s Herald as saying:

People get very hung up on the ranking … because it’s like a Top of the Pops top 10 thing. I don’t think they should be ignored … but knee-jerk reactions to rankings are really dangerous in education systems.

So, there are issues that we need to address, and as Fiona’s pointed out, there are no quick fixes – we need to deal with them in a considered way that includes as many variables as possible (i.e. not just practices in schools).

One of those issues is highlighted by Sir Peter Gluckman, the Prime Minister’s Science Adviser, who’s said:

What’s worrying is that there seems to have been a decline in the people represented in the top end of the scale and an increase in the number of people at the bottom end of the scale.

And socioeconomic status may well play a part in this. From the Herald story:

New Zealand was one of just two countries in which socio-economic status had a strong connection to a student’s performance. Some countries’ education systems made up for social disadvantage, but this was not the case in New Zealand.

So any solution addressing the PISA results will of necessity be complex. It’s not going to be sufficient to look only at what’s going on in schools. Yes, support and professional development for STEM teaching across the compulsory sector will be needed. The quality of teaching is definitely important (for a student’s perspective see the Herald article). But without also seriously considering and attempting to deal with the social inequalities in this country, I suspect changes in the educational sector alone will not be enough.

October 26, 2013

doing citizen science

This is something I wrote for my ‘other’ blog, but I thought I’d post it here as well as the whole ‘citizen science’ thing has considerable value for school-level education, and I thought some of you would probably have some valuable insights into/comments on the subject.

The other day I was asked for some advice on setting up a ‘citizen science’ program. The people asking were looking at developing outreach: giving talks, helping with local science-y initiatives, setting up websites, & so on. I responded that it all sounded good, and it was great that they were looking at ways of communicating about the science they were doing, but that it didn’t really sound like my understanding of the term ‘citizen science’. (I hasten to add that I’m not an expert: I do a lot of science communication, but this is not the same thing at all.)

The idea of citizen science has been around for quite some time – there are papers on the subject dating to the 90s – but in New Zealand I would hope it’s developing a higher profile in the scientific community with the advent of the NZ Science Challenges & their requirement to get ‘the public’ more engaged with the science that we’re doing in this country.

And under the citizen science model this requires some serious thinking about the logistics, because one thing it’s not, is scientists telling laypeople what they’ve been doing. Instead, it sees school children, their whanau, members of various community groups, all getting involved in an organised and coordinated way with the actual research: making observations, collecting data, discussing the results, looking at how to apply them in their area. This is a lot more complex in terms of organisation than arranging to give a talk or write a pop-science article (or a blog!).

Jonathan SIlvertown defines a citizen scientist as “a volunteer who collects and/or processes data as part of a scientific enquiry” (2008: 467), and notes that such projects are becoming particularly common in ecology and environmental science. (And it’s not a new initative: Bonney et al (2009) point out that US lighthouse keepers got involved in collecting data on bird strikes back in the 1880s. Perhaps we could regard Charles Darwin as a citizen scientist, particularly at the beginning of his career – he certainly wasn’t doing it as part of a paying job!) He goes on to say that “[t]oday, most citizen scientists work with professional counterparts on projects that have been specifically designed or adapted to give amateurs a role, either for the educational benefit of the volunteers or for the benefit of the project. The best examples benefit both” (2008: 467). This makes it clear that planning to involve citizen scientists in a given project has to part of the initial project development; it can’t really be an add-on at the end. While many of the projects Silvertown lists are essentially surveys and censuses, Bonney et al (2009) provide a model for doing citizen science to answer particular scientific questions in a way that also enhances science literacy and engagement with the subject.

Bonney & his colleagues work at the Cornell Lab of Ornithology, which over the years has seen the results of many ‘citizen-science’ projects published in a range of journals. At the same time they’ve noted increases in scientific literacy and engagement with science among many of their lay participants. These are very positive outcomes, and they’ve put together a model for setting up such initiatives and assessing their success. Commenting that “e have found that proj- ects whose developers follow this model can simultaneously fulfil their goals of recruitment, research, conservation, and education “, Bonney & his team list the following steps/stages in setting up & running a successful citizen-science project:

1. Choose a scientific question – it will probably be one that stretches across a relatively long period of time, or a large geographic area.

2. Form a scientist/educator/technologist/evaluator team – this must include individuals from multiple disciplines – the scientist to develop the question, methodology & analysis tools; the educator to field-test methods with the participants, develop support materials, etc; and so on.

3. Develop, test, and refine protocols, data forms, and educational support materials: it’s essential that participants receive clear protocols for collecting their data (using clear simple forms) & that they receive help in understanding those protocols and passing their data on to the researchers.

4. Recruit participants. How this is done is going to depend on whether the project is open to all or is intended for a particular cohort eg school students.

5. Train participants, so that they gain confidence in their ability to collect and submit data, & know they’ll be supported as and when necessary.

6. Accept, edit, and display data. “Whether a project employs paper or electronic data forms, all of the information must be accepted, edited, and made available for analysis, not only by professional scientists but also by the public. Indeed, allowing and encouraging participants to manipulate and study project data is one of the most educational features of citizen science.” [my emphasisi]

7. Analyse and interpret data. This can be tricky due to the often‘coarse’ nature of the data-sets collected by participants,  & made more so if there are (for example) errors due to species mis-identification or misunderstanding of protocols.

8. Disseminate results. While this will involve scientific publications, it’s also important – & essential – that the results and their interpretation & application are also communicated with the citizen scientists who helped to generate them.

9. Measure outcomes. These will be both scientific and educational. The former are fairly straightforward to quantify: number of papers published, conference presentations given, or students successfully completing theses, for example. The educational outcomes may be harder to define, but Bonney et al suggest assessing things like the length of time people were involved with the project; how often they accessed web sites associated with the project; whether their understanding of the science content improved over the duration of the research; whether their understanding of the nature of science was enhanced; positive changes in attitudes towards science; better science-related skills; the number of participants stating increased interest in a career in science.

Doing all this will of necessity require education or social science research techniques, so there’s someone else to add to the team. Yes, there are costs, in dollar terms but also in terms of the time taken to set up a rigorous project with benefits for all involved. But there is potential for those benefits to be significant.

R.Bonney, C.B.Cooper, J.Dickinson, S.Kelling, T.Phillips, K.V.Rosenberg & J.Shirk (2009) Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience 59(11):977-984

J.Silvertown (2008) A new dawn for citizen science. Trends in Ecology & Evolution 24(9): 467-471

September 23, 2013

teach creationism, undermine science

This is something I originally wrote for my ‘other’ blog.

Every now & then I’ve had someone say to me that there’s no harm in children hearing about ‘other ways of knowing’ about the world during their time at school, so why am I worried about creationism being delivered in the classroom? 

Well, first up, my concerns – & those of most of my colleagues – centre less on whether teaching creationism/intelligent design is bringing religion into the science classroom1, & more on how well such teaching prepares students for understanding and participating in biology in the 21st century. For example, if a school can make statements like this:

It is important that children and adults are clear that there is one universal truth. There can only be one truthful explanation for origins that means that all other explanations are wrong. Truth is truth. Biblical truth, scientific truth, mathematical truth, and historical truth are in harmony2.

and go on to list the “commonly accepted science we believe in”, then their students are not gaining any real understanding of the nature of science. And the statements regarding the science curriculum that I’ve linked to above indicate that it’s not just biology with which the school community has an issue. Physics, geology, cosmology: all have significant sections listed under “commonly accepted ‘science’ we do not believe in”3. (Did you notice the quote marks around that second mention of science?)

Science isn’t a belief system, & while people are entitled to their own opinions they are not entitled to their own facts. Any school science curriculum that picks & chooses what is taught on the basis of belief is delivering (to quote my friend David Winter) “a pathetic caricature of actual science, … undermin[ing] science as a method for understanding the world and leav[ing] the kids that learned it very poorly prepared to do biology in the 21st century.” Or indeed, to engage with pretty much any science, in terms of understanding how science is done and its relevance to our daily lives. And if we’re not concerned about that lack of science literacy, well, we should be.

 

although I do think this is a problem too.

2 with the subtext that the first ‘truth’ takes precedence.

Taken to its extreme, the belief system promoted in teaching creationism as science can result in statements such as this:

We believe Earth and its ecosystems – created by God’s intelligent design and infinite power and sustained by His faithful providence – are robust, resilient, self-regulating, and self-correcting, admirably suited for human flourishing…

…We deny that Earth and its ecosystems are the fragile and unstable products of chance, and particularly that Earth’s climate system is vulnerable to dangerous alteration because of miniscule changes in atmospheric chemistry.

This does not look like a recipe for good environmental management to me.

 

September 20, 2013

charter schools can teach creationism after all

I first wrote about charter schools just over a year ago. At the time I was commenting on statements that such schools would be able to employ as teachers people who lacked teaching qualifications, wondering how that could sit with the Minister’s statements around achieving quality teaching practice. But I also noted concerns that charter (oops, ‘partnership’) schools could set their own curricula, as this would have the potential to expand the number of schools teaching creationism in their ‘science’ classes.

Well, now the list of the first 5 charter schools has been published: two of those schools is described (in the linked article) as intending to “emphasise Christian values in its teaching.” By itself that =/= creationism in the classroom – but yesterday Radio New Zealand’s Checkpoint program (17 September 2013) reported that the school’s offerings will probably include just that.

In addition the prinicipal has reportedly said that the school will teach “Christian theory on the origin of the planet.”

And today we’re told (via RNZ)

The Education Minister has conceded there’s nothing to prevent two of New Zealand’s first charter schools teaching creationism alongside the national curriculum.

Two of the five publicly-funded private schools, Rise Up and South Auckland Middle School, have contracts that allow a Christian focus.

The minister, Hekia Parata, said on Tuesday that none of the five schools would teach creationism alongside or instead of evolutionary theory.

But on Thursday she told the House two of the schools will offer religious education alongside the curriculum.

Ms Parata did not specify how the two would be differentiated in the classroom.

South Auckland Middle School has told Radio New Zealand it plans to teach a number of theories about the origins of life, including intelligent design and evolution.

Point 1 (trivial, perhaps?): South Auckland Middle School needs to look into just what constitutes a theory in science. (Hint: a theory is a coherent explanation for a large body of facts. “A designer diddit” does not remotely approach that.)

Point 2 (not trivial at all): Why do people responsible for leading education in this country think it acceptable for students to learn nonscience in ‘science’ classes? After all, the Prime Minister has commented on “the importance of science to this country.” Evolution underpins all of modern biology so how, exactly, does actively misinforming students about this core concept prepare those who want to work in biology later? Nor does teaching pseudoscience sit well with the increased emphasis on ‘nature of science’ in the NZ Curriculum.

This is really, really disappointing. We already have ‘special character’ schools which teach creationism in their classrooms (see herehere and here, for example). It’s irking in the extreme that state funding will be used to support the same in the new charter schools.

Older Posts »

The WordPress Classic Theme. Blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 164 other followers