Talking Teaching

February 9, 2011

‘small-group’ teaching in the ‘large-group’ context

This is a cross-post of something I first wrote for my ‘other’ blog :)

Today I was involved in a session on ‘large-group teaching’, run by our Teaching Development Unit. (Secondary teachers can probably skip this post as most likely what I’m going to talk about is pretty much routine for you.) Why? Well, there’s a fairly common perception that ‘the’ model to use in large first-year science classes is the bog-standard lecture: an academic discourses on a particular topic & students take notes. I accept that this may be seen as a bit of a caricature & I do know that not everyone teaches this way, but it is the way that most lecturers of my generation were taught & we do tend to model that sort of thing.

Anyways, back to the chase. What do I see as a ‘large’ group, an average lecture size? Well, Waikato is a smallish institution so my ‘large’ classes have around 200 students in them. But I need to say up front, I don’t think there’s actually much difference in how I teach a class of 20 and a class of 200. Maybe it takes a bit more planning with a large class, but the same techniques work with both.

When you’re on my side of the lectern it’s worth identifying, up front, the things you want your students to get out of your teaching. I see myself as educating my students in the broadest sense – that means I want them to take the information, the concepts, the ideas, the perceptions of how science works & how it sees the world, and fit them into the personal intellectual framework that lets them make sense of the world (the keynote at an e-learning symposium I attended last week called this framework a ‘schema’). To me, when I’m working with students, what I’m hoping for is that I’m helping them incorporate those new data points, & the new way of thinking I’m presenting, into their personal schema.

So I’d like to think that my lectures are exciting, sometimes, and entertaining, sometimes, and engaging – hopefully all the time, because I believe that students are more likely to make meaningful learning connections if they’re engaged with the material. But I want more than that.

I want them to interact (with each other, with me, with the ideas they’re encountering), because that too makes it more likely that meaningful learning is going to take place.

I want them to participate, because if you’re actively participating in a class you’re far more likely to be thinking about what’s going on & engaging with all the ideas flying around, & making sense of them – and maybe changing some of your existing conceptions about the world. Because, after all, education should be transformative, taking you from one state of knowledge (in the broadest sense) to another.

I want them to learn a darn sight more than ‘the facts’. (I can’t think how often I’ve heard someone say, “oh that’s all very well, but if you do those things you must be missing out an awful lot of facts.”) What are the most important things we want students to gain from a paper, or a program of study? In science (at any level), one of the aims surely has to be to gain an understanding of what science is, how it’s done, & why it’s such a powerful tool for gaining an understanding of how the world works? In which case, it’s not enough to tell students about science & to fill them up with facts (many of which will probably be dropped from short-term memory storage as soon as the exam is past); we have to give them opportunities to practice doing science, & thinking like scientists, for themselves, & to fit their new knowledge & understanding into the long-term storage of their personal intellectual framework.

So how do you do this in a class of 200 or more? That’s really what I was asked to talk about – but in the light of what I’ve just said, what do you think would be my preferred approach? Yep, the seminar participants got to do the things I was advocating. A couple of examples:

In about the third lecture I’ll give in the next semester, I ask the class to consider why I think it’s important for them to know something about plants. Why are plants so important to the very existence of life on earth? Part of this includes looking at a graph which up until now (& thus failing to practice what I preach!) I’ve basically just talked about. This year I’ve decided to put it up on screen & ask the students to tell each other what it means – challenging their comprehension, giving them the opportunity to interpret & explain data presented in this particular way. So I showed it to my colleagues & said right, go to it, why are plants so important to life on earth? What’s going on in the graph? What evidence is there for your interpretation?

The graph looks a bit like this, although it has other information on it, including uptake of O2 first by marine rocks & later by terrestrial surfaces:

Well! I had to interrupt after 3-4 minutes so that we could come back as a group & discuss this. It was a good reminder for me that I needed to check that everyone in my first-year class is familiar with the conventions of how graphs are drawn & read, & for my ‘class’ of colleagues I really should have reminded myself that none were biologists & most weren’t scientists! But on the other hand, because this was completely new stuff for most in the room, they found it interesting & really got involved with working out what the graph was about & how to explain what they were seeing. Yes, this will take longer than me standing up in front of my first-years & expounding on the graph, but which approach do you think is going to result in a better-quality learning experience?

And another example to leave you with; again, what I’m trying to do with this one is to get students to look at things through a scientific lens; to ask questions, design hypotheses; consider how to test these. This time it’s from a lecture on reproduction.

When you look around the animal kingdom, you’ll find that for a great many species, individuals don’t live long beyond their prime reproductive years. Mayflies are probably an extreme example: after a mad orgy of reproductive activity that lasts only a few days at most, all the adults die. (They’re not called Ephemeroptera for nothing!) Now, in evolutionary terms this makes sense – once you’ve successfully passed your genes on, from an evolutionary perspective it doesn’t really matter too much if you’re run over by a bus the next day (or the mayfly equivalent thereof). But take a look at primates (the group of mammals that includes monkeys, the other apes, & us) & you’ll see something different. Many primates do live past their prime reproductive years.

The questions I pose – for you now, as I did for my colleagues today – are: why? What sort of selection pressures might lead to some primates living well past their reproductive years, to become grandparents? And, once you’ve made an hypothesis about this, how would you test it?

Advertisements

2 Comments »

  1. Explanation: the fitness equations only work if you consider the fitness of the grandchildren, not just their parents. It is not enough to pass one’s genes into the next generation unless that generation does as well. Primates, and especially humans, have extended preadolescence, which increases the likelihood that they will not live long enough to breed. The high investment primates put into their offspring means that we have very few per breeding couple, so increasing odds of offspring survival becomes more of a pressing concern. Increasing the age beyond breeding age to allow extended care of the grandchildren becomes a selective pressure.

    How to test it? That I don’t know. Perhaps doing a comparative analysis across a lot of species correlating length of adolescence, offspring number, lifspan, but that would only be a correlation. One could look at individual variation within the same species, such as comparing lifespan in humans from multigenerational large families vs. multigenerational small families, but again, that would be a correlation. It would be a start, but hardly conclusive. I don’t know a good way to directly test it that is not hugely flawed in one aspect or another.

    A question for you. I will be teaching a class on the early history of life on earth soon. Would you mind sending me a copy of your graph I can use with my students?

    Do you have any data that shows teaching like this really improves test scores? It would make it easier to convince my colleagues here if I could give them performance data.

    Comment by jdmimic — February 12, 2011 @ 4:48 pm

    • I found the graph on-line (I think there’s a hot link) so it’s not actually mine (blush)….

      Carl Wieman (physicist & Nobel laureate) has done a number of presentations around the area of teaching like this & its relationship to student performance (not just test scores) – you could try this link http://www.cwsei.ubc.ca/SEI_research/index.html as it gives a whole bunch of papers & conference posters. Hopefully you’ll find some useful material there. Good luck! (I’m trying to locate another paper for you but so far I can’t remember which folder I tucked it away in…)

      Comment by alison — February 14, 2011 @ 3:46 pm


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: