Talking Teaching

May 23, 2014

some more thoughts on facebook & student engagement

Filed under: education, university — Tags: , , , , , , — alison @ 9:58 pm

After I wrote my last post, on using course-related Facebook pages to help enhance student engagement, I thought I’d see what students thought about the issue. So I shared a link to the post on the FB page run by our biology students, and asked what members had to say. I also mentioned the idea in class, and discussed it with a colleague (we were originally talking about student management systems, but it was one of those wide-ranging chats that grows and grows…).

Somewhat to my surprise – although I guess I hadn’t really given it a lot of thought – there are a lot of FB pages out there with links to various papers and programs. (Our registrar set one up with several friends, when they were working on a group project for a postgraduate paper, as a means of sharing ideas and working on problems.) The students tell me that they found the pages really did help with a sense of ‘belonging’, especially for those who were at a satellite campus or didn’t come onto the actual campus regularly. They gave opportunities to share information, answer questions,  & just be social.

Interestingly, several said that they found our ‘standard’ student learning management system, Moodle, difficult to use from a smart-phone: apparently you need to log on again and again; there’s no means of staying logged in for a day, for example. They also reminded me that with FB, you get notifications whenever someone posts something on a thread you’re following; on Moodle the notifications are less constant and via email.

And apparently some students find Moodle quite intimidating (& I must follow up on why), and people were more likely to comment & to answer each other on student-run class FB pages.

One thing that’s become more & more obvious to me, the more I think about it, is the immediacy and the highly visual nature of FB, as opposed to the text-based look of a Moodle page (and yes, I know you can add pictures!). Here’s a screenshot of part of the page for my A semester class:

Screenshot 2014-05-23 08.50.35

As you can see, it’s all words. If someone wants to see what’s being discussed, they have to open the ‘Discussion forum’ folder, & once they’re in there, they need to open a particular ‘topic’. They need to click on the link for a video or webpage – there’s no enticing link. And so on. Whereas on FB, the video or the page are right there with a nice visual tag. OK, posts and comments build up & will slip to the bottom of the page if they’re not active, but that happens within a Moodle forum as well.

Anyway, what I’m thinking I’ll do is set up a closed page for the B semester paper (students have ask to join) and send the link for the page to everyone in the class. I’ll make it clear that this is as well as and not instead of Moodle, which remains the official means of sharing information & resources. Also, I’ll set it up so the class reps – if they agree! – are admins (& they and I can agree on some basic house rules), so that there’s a feeling that this is more ‘by the students, for the students’. And then we’ll see what happens. (I’m sure I’ll think of more things as we go along!)

What do you think?

March 12, 2014

teaching plant life cycles – trying a different approach

For whatever reason, I find that many students seem to struggle when it comes to learning about plant life cycles. The whole sporophyte/gametophyte, meiosis/mitosis thing really gets them – & that’s even before we start looking at how the life cycle is modified in different groups of plants. Yes, the textbook has lots of diagrams & yes, I’ve always started simple & worked on from there, with opportunity for plenty of questions, but still there are those for whom the topic fails to click. (Not to mention the lecturers in third-year classes, asking whether we really teach this stuff in first-year.) This year the issue’s become even more of a challenge, given that about 2/3 of my large-ish (N>200) didn’t study plants in year 12 at school.

So this year I wondered if it would help if I drew a really basic cycle on the board, as preparation for a more detailed session in the next lecture. I do this in tuts anyway, but not everyone comes to those… And because I use panopto for recording lectures, I needed to think about the best way to do it, because while there are whiteboards in the lecture room they are non-interactive, & the camera doesn’t do a good job of picking up things on a ‘normal’ board. And this is where having a tablet (not an iPad this time; it’s too frustrating when mine won’t communicate properly with the lecture theatre software) comes into it.

This is because, once the tablet’s hooked up to the lecture room system, then anything I might write on its screen (with my spiffy little stylus) is recorded via panopto. And so I left blank slides in my presentation, & drew all over them when we got to that stage, cute little frogs & everything :) (Why frogs? Because we started off with drawing an outline of an animal life cycle, slotting in meiosis & fertilisation, haploid & diploid – with the opportunity to expand on what those terms might mean – before going on to drawing alternation of generations in a very general sense.

Which sounds fine in practice, doesn’t it? Unfortunately, now that I’ve gone & checked the recording, I see that the material on my tablet DIDN’T make it across to panopto, which is downright annoying & obviously I’ve stuffed up somewhere. OK, everyone in the lecture theatre got the benefit of that experience, but those who weren’t, didn’t :( And part of the reason for doing the recordings, is that those who’ve got lecture clashes can catch up later. Mutter mutter mutter.

However, all is not lost. I’m staying later at work for an evening event, so I’ll do a re-record once I can get into a free lecture theatre.

All part of the learning curve – as is the anonymised ‘feedback’ thread I’ve set up on our Moodle page. If the technique helped most students understand the concept of alternation of generations, then I’ll work on doing it better. If it didn’t, well, I guess I need to go back to the drawing board.

February 16, 2014

presenting on plants at WCeLfest

This post was first published on my ‘other’ blog.

For the last few years our Centre for e-Learning has run WCeLfest – a day of presentations & discussion around using various technology tools to enhance teaching & learning. I always find these sessions very valuable as there are a lot of people doing some really interesting things in their classrooms, & there’s always something new to learn & try out myself. I offered to run a session myself this year, which is what I’m going to talk about here, but I was also asked to be on the panel for a discussion around what universities might look like in the future, and that was heaps of fun too.

My WCeLfest session was billed as a workshop, so to kick things off I explained that the attendees were going to experience being in what is effectively a ‘flipped’ class, getting the students’ perspective, and why I’d developed the class in the way that I had. (I added that feedback on that experience was welcome!) I think there was one biologist in the room, so for most of those present the things they’d be doing would be just as novel as they will be for many of my students.

First, my ‘class’ got some extra background information. If previous years are anything to go by, then about a third of the students in my first-year biology class won’t have studied the year 12 Achievement Standards related to plants1. This always poses something of a challenge as we run the ‘plants’ part of the paper first, flowers & fruit being readily available in late summer (& I doubt things would be different if we taught it later in the paper). So I’m always thinking about improved ways to bridge students into the subject without boring those who have a reasonable background in things botanical.

The first lecture looks at what plants are & why they’re important, both ecologically & in terms of human history. For the last 2-3 years I’ve used an active learning exercise, putting up a graph on changes in atmospheric oxygen over the 4.5 billion years of Earth’s existence and asking the students to interpret and discuss the information it shows. But, using the same graph with a different group of learners, I realised that some of my students might not even know what photosynthesis entails, which would rather destroy the purpose of that part of the class.

So this year, they’re getting homework for the night before: this video. And at WCeLfest, we watched it together.

As you’ll have seen, there are a few, very basic, questions at the end of the video, but we stopped the video before reaching the quiz & instead briefly discussed and answered each question in groups, plus there were some additional queries, which was great. The original set of questions reinforce the basic concepts & give those students who were unfamiliar with them a bit of confidence that they’re prepared for the next step.

Now, for my ‘real’ class I’ll be showing an additional, more complex video, but for this shorter session we just moved on to the data interpretation.

Again, I explained the rationale behind this part of the session. I’d decided to do this exercise with my first-year students for a couple of reasons: firstly, to break up the class and get them actively engaged in the learning process; and secondly, to give practice in the process skills needed to interpret information provided in graphical form. The question they needed to address, using their knowledge from the video and the data in the graph, was: without plants, life as we know it wouldn’t have evolved in the first place. Why not?

O2 concn over time.png

As I do in my normal classes, while the class split into groups to come up with an answer, I circulated between those groups2 in order to hear what was going on & field any additional questions. “What was the atmosphere made of before photosynthesis began?” was one, which led to a brief consideration of how the Earth formed. And I needed to explain oxidised/oxidation, as well. This was a really valuable process for me as it’s highlighted a couple of areas where I need to do a little more background work with my first-years.

A quick summary of the class discussion: the ‘oxidation’ part is important because that’s how we know when oxygen generation began – iron-rich rocks began to rust. It wasn’t until the exposed rocks had been oxidised and the ocean had become saturated with oxygen, that oxygen began to be released into the atmosphere, as evidenced by more oxidised rock. As O2 accumulated in the atmosphere, the ozone layer formed, offering protection from the sun’s UV radiation & allowing living things to move onto the land.

And we finished with a quick look at the ‘design-an-organism’ class that I’ve previously blogged about.

The feedback was very positive, with several people saying that they could see how they might use the flipped classroom technique in their own teaching. It was also lovely to hear someone say that they’d got a bit worried when they realised we’d be talking science, but that they’d really enjoyed the experience and learned some new things along the way. And I’d learned ways to improve the exercise, so the enjoyment & learning were mutual

1 These are AS91155 Demonstrate understanding of adaptation of plants or animals to their way of life, and AS91156 Demonstrate understanding of life processes at the cellular level. You’ll find them here on the NZQA website.

2 In my ideal class3 there’d be an ‘aisle’ between every 2 rows of seating, to allow teachers/facilitators to move more freely among the students.

3 I can dream, can’t I?

April 2, 2012

in the lecture theatre – but definitely not giving a lecture!

Today’s class was a real experiment for me, & although I try lots of different things in my classes, it was also a step outside my normal comfort zone. (But hey! life would be a bit boring if we always stayed safely inside that zone!) Why? Because I put into practice an idea I stole from my friend & colleague Kevin Gould (who also very kindly let me use the resources he’d developed): today was ‘design-a-plant’ day, & probably to anyone looking into the lecture theatre during the first 30 minutes or so it would have looked as if chaos definitely ruled.

Last Friday I gave everyone an information sheet: descriptions of the features of leaf, stem & root that you might see in plants adapted to different environments. Today I trotted off to the lecture room with a box full of overhead transparency sheets, overhead pens, & printed scenarios (descriptions of a particular environment). The lecture theatre was already full – everyone had come ahead of time! This definitely wasn’t usual (it’s not that they normally trickle in late, but we’re talking seriously early) – obviously they were expecting something special. Gulp.

So I put up these slides:

then once they’d sorted out their groups I dished out pens, transparencies, scenario sheets (& copies of the info sheet for those who’d forgotten them), & away we went on a mutual journey of discovery. After all, this wasn’t my idea & I had no idea how it would really work out.

Well! The class erupted into happy, productive noise. I know it was productive because while they talked, argued, explained & persuaded, I circulated, listened in, & answered the occasional question. Those with computers had them open – looking up information related to their scenario. (Next time someone asks a question that I can’t answer on the spot, I’m jolly well going to get someone else to google it for me!) They drew, & altered their drawings, & drew some more. The original 20 minutes stretched towards 30, & still they were focused on what they were doing. I was almost sorry to interrupt :-)

Then, I called for volunteers. A hand went up almost immediately, & its owner came down to the overhead projector, not looking too nervous. She picked up the microphone, described her group’s scenario, & showed – & explained – their response. The next speakers followed just as quickly, and each speaker received a round of applause as they finished.

But the proof’s in the pudding – just what sort of plant had they designed? Well, they didn’t necessarily look like plants that my botanical colleagues could have put a name to, but nonetheless, the explanations each group gave for their particular design were sound, & science-based. They’d obviously taken on board not only the info on that fact sheet, but also the material we’d been looking at in lectures & that they’d found on line. And they’d had fun doing it. (I particularly liked the Nepalese Death Vine – the eerie noise of the wind passing through its herbivore-deterring spines apparently puts the locals off harvesting it, lol – and the Serengeti ‘cactus’ that traps water in basin-like leaves, but when there’s a fire the plant’s transpirative water loss is such that its tissues become flaccid and it wilts, spilling that water onto the ground where the dampness keeps the worst of the fire at bay.) Plus – so far, the feedback for this exercise on our Moodle page is all positive: students felt it definitely helped their learning about plants.

Thanks, Kevin – your design-a-plant lesson got an A+ from all of us today!

March 5, 2012

changing teaching techniques

This post’s title is another one drawn from the search terms that brought people here to Talking Teaching :-) I’ve written quite a lot about the benefits students may gain as a result of lecturers changing the techniques they use in the classroom. A while back I wrote about the idea of helping students to visualise a paper’s curriculum, & this semester I decided to try that out with my first-year biology class. Today was the first day of the new semester, & I thought I’d share what I did with them – it would be interesting to hear what others think of this approach, so please do add a comment :-)

I kicked off with this slide – I thought the images captured some of the confusion that many first-year students seem to share as they enter their first year of uni study. It’s a fair bet that all the new terms & concepts thrown at them in many ‘traditional’ paper outlines don’t help :-)

Then I listed the obvious: the various classroom ‘styles’ they’ll be experiencing (ie lectures, labs & tuts). And pointed out that there are definite bi-directional links between them – this is because (in my experience, anyway) some students tend to see them as isolated enitities. When I first tried my hand at a diagram like this my wonderful friend & colleague Brydget pointed out that it was way too complicated; the kids would just get lost in the detail. I took her advice & had another go :-)

And then I asked, OK, when you enrolled in this paper, what did you think you’d be doing & learning? This was the very first class so I wasn’t sure what responses I’d get, if any, but I wanted to send the message from the start that this is how I teach & that active participation is the norm in my lectures. But people put their hands up. ‘Content,’ they said; ‘stuff about plants & animals & how they function & how they interact with their environment.’ ‘Great!’ I said, ‘and I need to make sure that we do look at some of this, because my colleagues further down the line will expect you to be familiar with this material.’

‘But wait!’ I said, ‘there’s more!’ (Because beyond ‘dissections!!!’ no-one had mentioned any process skills.)

So now we could look at those other skills & why they are relevant. We’d talked a bit about plagiarism at orientation last week, so I could check back on their understandings around this – & emphasise that we’ll be working with them to develop their skills in academic writing, referencing, citations & so on. And critical thinking – to me, this is surely one of the most important skills that any student could acquire during their time at university.

Now, where are we going with all this?

 Well, there’s the obvious one – that first-year is expected to turn out students with the knowledge & skills that they’ll require if they’re going on to further study in the subject. But there’s a second, equally important point here, and it hinges on the fact that there are quite a few students in the class who aren’t going to major in biology, & who may not actually be science students at all – they’re taking the paper as an elective in another degree altogether. What do I hope they will gain from it?

Yes – apart from (I hope!) helping them gain an enthusiasm for & appreciation of the living world, I really really want to enhance the scientific literacy of all my students, so that they can apply this understanding in their own future lives, regardless of whether they’re going on to a career in the sciences.

Now, I don’t know what the class thought of this approach – yet. I’ve asked them to let me know (anonymously if they like) through our Moodle page. But it would be good to hear from readers as well :-)

January 31, 2012

motivating tomorrow’s biologists

That’s the title of Susan Musante’s paper in the latest issue of Bioscience (& many thanks to David Winter for sending it on). It’s a summary of some key points made by speakers at an NAS convocation called “Thinking evolutionarily: evolution education across the life sciences.”

Now, I find science fascinating, exciting, & endlessly interesting, & I’m sure my colleagues feel the same. The thing is, how to pass all that on to our students? As I’ve said before, simply providing them with quantities of facts is not going to do it. At the convocation, several speakers stressed that

[simply] regurgitating the biological knowledge generated by the scientific community or conducting “cookbook” laboratory experiments does not result in genuine understanding or excitement on the part of students… Instead, the nature and process of science, the unifying concepts and connections to the real world, and the problems encountered and discoveries made by scientists are what make biology come alive.

Biologists, of course, recognise the complexity of their subject all too well. However, I suspect that our desire to ‘get the facts across’ obscures that complexity and at the same time works against – rather than for – student engagement. So, how can biology educators motivate their students as they come to understand our fascinating subject?

One part of the equation is how it’s taught, something I’ve discussed before (here, for example). While those lecture-room techniques can make a real difference to student understanding and mastery, there are other learning environments to consider. Beginning to move away from ‘cookbook’ labs is part of it. Yes, there are practical skills that students need to learn, but why not look for ways to deliver those skills in contexts that are more meaningful and relevant to the students? For example, in the B semester our first-years practice a lot of those skills in the context of solving a ‘whodunnit’, finding out who disposed of the paper coordinator (me!). (OK, we chose that one because of the generally high interest in shows like CSI; other contexts would work as well. Anything to move away from following a recipe to get a result that most in the class probably realise is a ‘given’.)

Another tool – and an important one, if we’re hoping to give our students a feel for what scientists actually do, is to give them a chance to work with primary data – something that is in ready supply in universities :-)  There are some great resources for educators in the BioQUEST database, such as the Beagle Investigations Return with Darwinian Data, or BIRDD, to use in giving students that experience. Musante also quotes David Mindell (of the California Academy of Sciences) on the benefits of field trips:

We have a real disconnect between students and the natural environment

he says, and we should recognise that

allowing students to explore the outdoors through research projects is a proven way to encourage them to inquire deeply about the world in which they live.

This is something that the University of Sydney’s Pauline Ross uses to great effect with her undergraduate students.

We can use well-designed assessment tools to provide some extrinsic motivation to students, but giving the opportunity to gain personally-relevant experiences through such activities may well be more effective in the long run. Letting students gain those relevant experiences seems to be particularly important

for students that are under-represented in the sciences and students that initially have low expectations for success,

according to another speaker at the convocation, Paul Beardsley. This is something that deserves much closer attention here in NZ, especially when the Tertiary Education Commission’s funding priorities are taken into consideration.

Musante’s thoughtful summary provides links to a range of databases that teachers should find useful, and ends with a reminder that educators need to be students as well – not only adding to their own subject knowledge, but continuing to learn

about what motivates students and works to engage them, [so that] their students will be able to take ownership of their own learning. And that is essential if we are to increase the biological literacy of today’s students, who are tomorrow’s politicians, school board members, precollege teachers, and voters.

S.Musante (2012) Motivating tomorrows biologists. Bioscience 62(1): 16 doi: 10.1525/bio.2012.62.1.5

June 12, 2011

effects of changing teaching styles on student learning

This is a repost of an item I’ve just written for my ‘other’ blog. It would be good to hear what others think of the teaching methods it examines :-)

I know I’m creeping into Marcus’s territory here but the research I’m going to discuss today would apply to pretty much any tertiary classroom :-)

This story got a bit of press about a month ago, with the Herald carrying a story under the headline: It’s not teacher, but method that matters. The news article went on to say that “students who had to engage interactively using the TV remote-like devices [aka 'clickers'] scored about twice as high on a test compared to those who heard the normal lecture.” However, as I suspected (being familiar with Carl Wieman’s work), there was a lot more to this intervention than using a bit of technology to ‘vote’ on quiz answers :-)

The methods traditionally used to teach at university (ie classes where the lecturer lectures & the students take notes) have been around for a very long time & they work for some – after all, people of my generation were taught that way at uni, & it’s not uncommon to hear statements like, we succeeded & today’s students can do it too. But transmission methods of teaching don’t reach a lot of students particularly well, nor do they really engage students with the subject as well as they might. (And goodness knows, we need to engage students with science!)

Wieman has already documented the impact (or lack of it) of traditional teaching methods on student learning in physics, but this paper (Deslauriers, Schelew & Wieman, 2011) goes further in examining the effect on student learning and engagement of changing teaching methods in one group of first-year students in a large undergraduate physics class. It can be hard to manage a class of 850 students, and so the lecturers at the University of British Columbia had split it into 3 groups, with each group taught by a different lecturer. While the lecturers prepared and taught the course material independently, exams, assignments and lab work were the same for all students.

Two of the three groups of students were involved in the week-long experiment; one continued to be taught by its regular, highly experienced instructor, while the other group was taught by a graduate student (Deslauriers) who’d been trained in ‘active learning’ techniques known to be effective in enhancing student learning. And ‘active learning’ wasn’t just using clickers: the ‘experimental’ group had: “pre-class reading assignments, pre-class reading quizzes [on-line, true/false quizzes based on that reading], in-class clicker questions…, small-group active learning tasks, and targeted in-class instructor feedback” (Deslauriers et al, 2011). Students worked on challenging questions and learned to practice scientific reasoning skills to solve problems, all with frequent feedback from the instructor. There was no formal lecturing at all; the pre-class reading was intended to cover the factual content normally delivered in class time. While the control group’s lecturer also used clickers, this was simply to gain class answers to quiz questions & wasn’t used along with student-student discussion, which was the case with the experimental class.

One reason often given by lecturers for not trying new things in the classroom is that the students might resist the changes. But you can avoid that. I know Marcus finds his students are very accepting of change if he explains in advance what he’s doing & how the innovation will hopefully enhance their learning, and Deslauriers, Schelew & Wieman did the same, explaining to students “why the material was being taught this way and how research showed that this approach would increase their learning.”

So, what was the effect of this classroom innovation? Well, it was assessed in several ways.

During the experiment, observers assessed how much the students seemed to be engaged in & involved with the learning process; they also counted heads to see what attendance was like. At the end of the intervention, learning was assessed using a multichoice test written by both instructors – prior to this, all learning materials were provided to both groups of students. And students were asked to complete a questionnaire looking at their attitudes to the intervention.

In both classes, only 55-57% of students actually attended class, prior to the experiment. Attendance remained at this level in the control group, but it shot up to 75% during the experimental teaching sessions. Engagement prior to the intervention was the same in both groups, 45%, but nearly doubled to 85% in the experimental cohort. Test scores taken in the week before the experiment were identical for the two groups (an average mark of 47%, which doesn’t sound very flash) – but the post-intervention test told a completely different story. The average score for the control group was 41% and for the experimental class it was 74% (with a standard deviation in each case of 13%). And the intervention was very well-received by students, with 77% feeling that they’d have learned more if the entire first-year course had been taught using interactive methods, rather than just that one week’s intervention.

Which is fairly compelling evidence that there really are better ways of teaching than the standard ‘transmission-of-knowledge’ lecture format. I try to use a lot of interactive techniques anyway – but reading this paper has cemented my intention to try something completely different next year, giving readings before a class on excretion (a subject which a large proportion of the class always seem to struggle with), and using the lecture time for questions, discussion, and probably a quiz that carries a small amount of credit, based on the readings they’ll have done. And of course, carefully explaining to the students about what I’m doing.

I’ll keep you posted :-)

Deslauriers L, Schelew E, & Wieman C (2011). Improved learning in a large-enrollment physics class. Science (New York, N.Y.), 332 (6031), 862-4 PMID: 21566198

December 13, 2010

Experimenting with Experimenting

Filed under: education, science teaching — Tags: , — Marcus Wilson @ 1:35 pm

This is a copy of a post on my blog PhysicsStop  http://sci.waikato.ac.nz/physicsstop

Last week I was at the Australian Institute of Physics congress, in Melbourne.

One of my talks concerned a piece of work I’d done with my second year experimental physics class this year. Before going to Melbourne, I gave the talk a trial run at the University of Waikato’s ‘celebrating teaching’ day. It provoked a few comments then, and a few more in Melbourne, so I thought I’d give a summary of it here.

I’ve been teaching experimental physics more or less for the whole time I’ve been at the university (my divine punishment for navigating my own undergraduate studies on the basis of finding the path with the least amount of practical work in it). I’ve noticed that few students do any planning before the lab. Some will turn up at the lab without even knowing what experiment they will be trying to do. So this year I’ve tried to turn this around.

The great thing about the theory of tertiary education is that it says that when there is a problem, the solution is often easy. And that is to pay attention to what you are assessing. “If you want to change student learning …. change the assessment” ( G. Brown, J. Bull and M. Pendlebury. Assessing Student Learning in Higher Education.   Routledge, London, New York (1997). )  The issue was, I think, that I was never actually getting the students to plan anything. They learn that they can get good marks without doing any preparation beforehand, because the instructions for the lab are pretty well provided to them.

So this year I’ve forced them to prepare for a couple of experiments, by removing the instructions. Instead, I gave them the task they had to do, and  let them get on with working out how it should be done, using what equipment, etc. Since we use some moderately complicated lab equipment, I chose to ‘pair-up’ experiments – one week to introduce them to the equipment, the next to give them an experiment to do (without instructions) that used that equipment. That way, learning to drive the equipment did not become a distraction.

For the most part (around three quarters) students overcame initial hesitations (horror?) and tackled this very well. Most enjoyed it, and thought the approach was beneficial. However, the other quarter really didn’t like it. Appraisal forms, a focus group, and casual conversations in the lab with the students tell me this.

I gave my talk and there was a fair bit of discussion afterwards. The audience (mostly filled with secondary teachers and tertiary teachers with a strong interest in education) thought that the way that these experiments were assessed needed very careful thought to get the most out of the students. Was I assessing the ‘planning’ task itself (and how?), the end results of the planning, or something else. I thought I was assessing ‘planning’, as well as how well the student carried out and documented  the experiment after the planning, but possibly it was not transparent enough to some of the students.  That’s worth working on for next year. 

Also, was I concerned that students might get their experiment ‘planned’ by someone else? E.g. consult another student in the group that had done this experiment in a previous week. Personally, this doesn’t bother me – in fact, I would encourage such consultation as it shows students are taking the task seriously. If a student finds it easier to learn from other students rather than from me, I have no problem with that. If the end result is that he or she learns (and I mean ‘learn’ not ‘parrot’) what I wish them to learn (which is more than just facts) then I have no problem with whatever route they take.

I was encouraged by a final comment by a lecturer who had done a similar thing with a large first-year class (in contrast to my small second-year class) and found very similar results – generally successful and well-liked by students, but with a significant minority that had strong views the other way.

October 3, 2010

engagement techniques for teaching evolution

I see we’ve had a few hits recently from searches for teaching evolution. This is a topic that’s of particular interest to me, and while I’m definitely not an expert in the area of lifting student engagement with this often-contentious topic, I thought I might write a bit about some of the approaches we’ve tried here, plus some of the literature in this area. So pull up a chair, it could be a long-ish post :)

Teaching evolution can be fraught with difficulty: it is probably the only scientific theory to be rejected on grounds of personal belief. And beliefs can be very hard – perhaps impossible – to change. My own feeling, which fits with how I feel about teaching science in general, is that we should move from simply teaching a series of facts and concepts to looking at the development of the theory of evolution, and placing it in its social and historical contexts. After all, simply listing the observations & postulates that support Darwin’s concept of natural selection as the driver of evolutionary change isn’t exactly calculated to win hearts & sway minds! But helping students learn how our modern theory of evolution has developed over time may lead them to understand evolution, and so move beyond their various misconceptions around the topic.

There’s now a large amount of literature looking at the teaching of evolution. Back in 1994, William Cobern commented that “[teaching] evolution at the secondary level – is very much like Darwin presenting the Origin of Species to a public who historically held a very different view of origins.”  He felt that to meet this challenge, “teachers [should] preface the conceptual study of evolution with a classroom dialogue … informed with material on the cultural history of Darwinism.” In 1995 he added “I do not believe … that evolution can be taught effectively by ignoring significant metaphysical (i.e. essentially religious) questions. One addresses these issues not by teaching a doctrine, but by looking back historically to the cultural and intellectual milieu of Darwin’s day and the great questions over which people struggled.” Of course, the key issue here for classroom teachers is time – how on earth can all this be fitted into an already packed curriculum? (Well, that’s one issue – an equally pressing one is probably: where are the resources to support teachers in doing this?)

One answer lies in the changes to the NZ science curriculum, which is underpinned by a focus on the nature of science itself. You might remember that I wrote a bit about this in an earlier post. Part of that requires that students “learn about science as a knowledge system: the features of scientific knowledge and the processes by which it is developed; and learn about the ways in which the work of scientists interacts with society” – in other words, an understanding of the history of science is crucial here. And the ‘evolution back-story’ offers an excellent opportunity to learn about that, and also about the way science is done. Mind you, it also necessitates a change in how the topic is taught: one that gets students actively involved – not least, in examining their own conceptions of the topic. (My friend Kathrin Otrel-Cass & I discussed all this in a recent paper of our own.)

This was something I was very much aware of when I was redesigning our second-year paper ‘Evolution & Diversity of Life’. And that was a tricky balancing act! Pressure on the one hand to keep/increase the ‘diversity’ content, to support various third-year papers; and on the other, pressure to include more genetics; and in the middle, me, wanting more of the historical/philosophical stuff – completely necessary, given around 10% of students in the paper tended to a creationist view on the origins of diversity. Anyway, I read around a lot, & at the time I was quite heavily influenced by the work of Passmore & Stewart, who’d looked at practical ways of increasing student engagement with and understanding of the subject. (Tonie Stohlberg (2010) has also discussed such an approach, although I’m not entirely in agreement with her on all counts: for example, the statement that religion promotes a sceptical approach as much as science does. This sits uneasily with the faith-based nature of religious beliefs.)

In their 2002 paper, Cynthia Passmore & Jim Stewart discuss an evolutionary biology course that they designed, based on earlier classroom research and with 3 main principles underlying it:

  1. “There should be a commitment to designing instruction around key models [in this particular case, natural selection] in the discipline under study.
  2. There should be a recognition that scientific practice is discipline specific. The development of a curriculum should therefore take into account the ways in which scientists operate within their fields.
  3. There should be a commitment to providing opportunities for students to develop, revise, and use models in ways that are true to the discipline.”

Passmore & Stewart discuss the nature of scientific models at some length – something that’s directly relevant to teaching the nature of science in NZ classrooms today. In fact, they comment that they “believe that organising curricula around sets of scientific models provides students with opportunities not only to learn about the conceptual subject matter of particular disciplines but also about the natre of scientific knowledge – how it is constructed and justified…” Their course also gave students the opportunity to examine things like language use and scientific methodolgy as they built up arguments around an historical event. I liked this approach, not only because emulating it would hopefully enhance my students’ understanding of evolution, but also because of that very emphasis on understanding the nature of science (NoS). (A colleague and I had done an informal survey of our students’ understanding of the NoS & found it lacking, so you can see why I was keen to improve on this.)

Because of the multiple pressures on the paper I had to be selective: we couldn’t adapt Passmore & Stewart’s program in its entirety. In the end, we combined a range of activities that enouraged the class to: work collaboratively, build models, discuss ideas, and defend their position. This included a session using Rob Gendron’s exercises based on the Caminalcules, intended to get students thinking about the evidence for determining relationships between groups of organisms, and  the ways in which organisms might change over time. (The Caminalcules are rather hard-case, & because they look nothing like any animals students will have experience of, there’s less chance of preconceptions around relationships affecting the outcome.) While fun, it also required students to explain and defend their decisions. Another class had them reading & discussing work by Paley, Lamarck & Darwin (as described by Passmore & Stewart) & then analysing these models to identify the assumptions made by each author – & also their shortcomings. The idea here was to allow the class to identify some of the common misconceptions around evolutionary theory, & hopefully to avoid them themselves. It led on to a deeper examination of natural selection, based around some other work from Rob Gendron: a simulation of the action of natural selection, that you can expand on by introducing things like variation & mutation into the discussion. And we originally  finished up with a role play, where students took on the role of mediator & protagonists in a creation/evolution debate (script from a debate broadcast in the US some years ago). Then a couple of years later the PBS documentary on the Dover trial came out, & we used that instead as the starting point for a discussion around the nature of science. (This section of the course was definitely not your ‘typical’ university science lab course!)

The class members certainly seemed to appreciate this approach. They commented (in the end-of-semester appraisals) that it was more interesting than ‘standard’ labs, and made them think harder about the topic; they also valued the fact that it was non-judgemental/non-threatening. (I’ve often thought that  putting someone in a situation where their personal beliefs are threatened is hardly a way to bring them round to another point of view.) They were certainly more actively involved – more engaged – with what was happening in the class, although because we didn’t have both pre- & post-tests in place I can’t put my hand on my heart & say that there was a long-term change in attitudes & understanding. That’s something we need to implement as part of the next revision of the paper. And this time round, of course, I’ll have the benefit of Craig Nelson’s 2008 paper on techniques for engaging students in classes, particularly those on evolutionary biology. But I think the program would have enhanced their appreciation of the following video, which has been doing the rounds on the various SciBlogs sites lately!

A.Campbell & K.Otrel-Cass (2010) Teaching evolution in New Zealand’s schools – reviewing changes in the New Zealand Science curriculum. Research in Science Education 40 (published on-line 21 April 2010). DOI: 10.1007/s11165-010-9173-6

W.Cobern (1994) Point: belief, understanding, and the teaching of evolution. Journal of Research in Science Teaching 31(5): 583-590

W. Cobern (1995) Science education as an exercise in foreign affairs. Science & Education 4: 287-302

C. Nelson (2008) Teaching evolution (and all of biology) more effectively: strategies for engagement, critical thinking, and confronting misconceptions. Integrated and Comparative Biology 48(2): 213-225

C.Passmore & J.Stewart (2002) A modelling approach to teaching evolutionary biology in high schools. Journal of Research in Science Teaching 39(3): 185-204. doi: 10.1002/tea.10020  

T.Stohlberg (2010) Teaching Darwinian evolution: learning from religious education. Science & Education 19(6-8): 679-692. DOI: 10.1007/s11191-009-9187-5

March 19, 2010

Mobile phone physics

Filed under: university — Tags: , , — Marcus Wilson @ 3:51 pm

This post is a copy from my (Marcus Wilson’s) blog physicsstop. ( http://sci.waikato.ac.nz/physicsstop )

Just occasionally, I have a crazy thought regarding a physics demonstration.   This is one that I’m thinking about inflicting on my third year electromagnetism class.  

We’ve been discussing the way electromagnetic waves travel (or rather, do not travel) through electrical conductors. Basically, conductors allow electric currents to flow in response to an applied electric field (in simple terms this just means applying a voltage). Electromagnetic waves such as visible light, radio and X-rays contain electric fields, so when one hits a conductor electric currents flow. Flowing currents heat up a material. Where does this heat energy come from? From the wave. In other words, conductors suck out energy from an electomagnetic wave, and, broadly speaking,  the wave can only penetrate so far into the conductor. This distance is what’s known as the ‘skin depth’.

Skin depth depends importantly on two things – the conductivity of the material and the frequency of the wave. The higher the conductivity, or the higher the frequency, the smaller the skin depth.  Thus, if you consider the waves to/from a mobile phone (frequency of around 1000 MHz) travelling through aluminium (a very good conductor) the skin depth turns out to be small indeed – microns in size.  That means wrapping a phone in aluminium foil will prevent it from picking up a signal. I’ve already shown this in class.

But – here’s the crazy thought – what about water?   Distilled water is a pretty non-conductive, but what comes out of the tap is loaded with dissolved salts and has a moderate conductivity, albeit several orders of magnitude below aluminium foil.   What’s its skin depth for  mobile phone frequencies?  I’ve done some quick back-of-the-envelope, and I reckon something of the order  few centimetres.  So….I predict that if we put the phone in just a few millimetres of water (YES, it needs waterproofing first!) it will still receive a signal, but suspend it in the middle of a swimming pool and there’s going to be no reception at all.

 I reckon that getting my class to estimate how much water would be required to shut out the signal, and then design an experiment (that might or might not need to include ‘borrowing’ the university swimming pool for a short while) would be a great way to get them to think about the various issues themselves.  There’s plenty of literature to back up that assertion – e.g. Etkina et al., American Journal of Physics 74(11), p979  (2006). The best thing is that I can’t be tempted to tell them the answer –  because I don’t know it – I haven’t done the experiment myself. Though I have found this YouTube…

The WordPress Classic Theme. Blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 174 other followers